BREAKING ADVANCES

4595 Highlights from Recent Cancer Literature

MICROENVIRONMENT AND IMMUNOLOGY

Tumor Promotion by Intratumoral Plasmacytoid Dendritic Cells Is Reversed by TLR7 Ligand Treatment
Isabelle Le Mercier, Dominique Poujol, Amélie Sanlaville, Vanja Sisirak, Michael Gobert, Isabelle Durand, Bertrand Dubois, Isabelle Treilleux, Jacqueline Marvel, Jaromir Vlach, Jean-Yves Blay, Nathalie Bendriss-Vermare, Christophe Caux, Isabelle Puisieux, and Nadège Goutagny

Précis: This study suggests a new use in breast cancer treatment for synthetic ligands of TLR7 like imiquimod that are used widely as immunomodulators in clinic.

Vaccine-Instructed Intratumoral IFN-γ Enables Regression of Autochthonous Mouse Prostate Cancer in Allogeneic T-Cell Transplantation
Rodrigo Hess Michelini, Teresa Manzo, Tabea Sturmheit, Veronica Basso, Martina Rocchi, Massimo Freschi, Joanna Listopad, Thomas Blankenstein, Matteo Bellone, and Anna Mondino

Précis: Findings argue that cancer vaccines that improve antitumor T-cell responses can cooperate strongly with allogeneic bone marrow transplants to convert them into effective treatments for solid tumors.

IL-18–Primed Helper NK Cells Collaborate with Dendritic Cells to Promote Recruitment of Effector CD8+ T Cells to the Tumor Microenvironment
Jeffrey L. Wong, Erik Berk, Robert P. Edwards, and Pawel Kalinski

Précis: Results advance understanding of how NK cells can provide an initial stimulus to orchestrate the attraction of dendritic cells and additional effector cells into the cancer microenvironment.

Potent Immunomodulatory Effects of the Trifunctional Antibody Catumaxomab
Diane Goëry, Caroline Flamant, Sylvie Busakiewicz, Vichnou Pouirier-Colame, Oliver Kepp, Isabelle Martins, Julien Pesquet, Alexander Eggermont, Dominique Elias, Nathalie Chaput, and Laurence Zitvogel

Précis: This study reports a comprehensive dissection of the immunomodulatory effects of a bispecific mAb specific for a widely expressed tumor cell adhesion molecule and the T-cell molecule CD3, which is one of the first bispecific mAbs to be explored in clinic.
Histone Demethylase RBP2 Promotes Lung Tumorigenesis and Cancer Metastasis

Yu-Ching Teng, Cheng-Feng Lee, Ying-Shiau Li, Yi-Ren Chen, Pei-Wen Hsiao, Meng-Yu Chan, Ming-Daw Tsai, and Li-Jung Juan

Precis: Findings establish an oncogenic function in lungs for an Rb binding protein that modifies chromatin, with implications for malignant progression in this tissue.

Proteomic and Lipidomic Signatures of Lipid Metabolism in NASH-Associated Hepatocellular Carcinoma

Kyle Muir, Antonious Hazim, Ying He, Marion Peyressatre, Do-Young Kim, Xiaoling Song, and Laura Beretta

Precis: This study reveals a role for lipid-modifying enzymes in liver cancer, identifying in particular a specific type of long-chain polyunsaturated fatty acid participating in nonalcoholic steatohepatitis and liver cancer risk.

Posttranscriptional Regulation of PER1 Underlies the Oncogenic Function of IREx

Precis: Circadian rhythms that may affect chemotherapeutic efficacy are linked here for the first time to the unfolded protein response, a signaling pathway widely activated in cancer that plays an important role in tumor aggressiveness.

Peroxiredoxin-2 Represses Melanoma Metastasis by Increasing E-Cadherin/β-Catenin Complexes in Adherens Junctions

Doo Jae Lee, Dong Hoon Kang, Mina Choi, Yang Ji Choi, Joo Young Lee, Joo Hyun Park, Yoon Jung Park, Kyung Wha Lee, and Sang Won Kang

Precis: In discovering a specific antioxidant enzyme that can repress melanoma metastasis, this study also suggests a tractable new direction to treat this deadly disease.

TR3 Modulates Platinum Resistance in Ovarian Cancer

Andrew J. Wilson, Annie Y. Liu, Joseph Roland, Oluwafunmilayo A. Adelbayo, Sarah A. Fletcher, James C. Slaughter, Jeannette Saskowski, Marta A. Crispens, Howard W. Jones III, Samuel James, Oluwole Fadare, and Dino Khabele

Precis: There remains great interest in determining general strategies to overcome resistance to platinum compounds that are used very widely to treat cancer, including ovarian cancer.
Pathway-Based Serum microRNA Enhanced Radiation Sensitivity in PanIN-Specific Regulation of Wnt Genetic Ablation of the Fatty Acid-Binding Protein FABP5 Suppresses HER2-Induced Mammary Tumorigenesis

Liraz Levi, Glenn Lobo, Mary Kathryn Doud, Johannes von Lintig, Darcie Seachrist, Gregory P. Tochtrip, and Noa Noy

Precise: A protein that delivers fatty acids to the transcription factor PPARG is critical for mammary tumor development, rationalizing the development of FABP5 inhibitors to prevent or treat breast cancer.

4781

PanIN-Specific Regulation of Wnt Signaling by HIF2α during Early Pancreatic Tumorigenesis

Angela Criscimanna, Li-Juan Duan, Julie A. Rhodes, Volker Fendrich, Emily Wickline, Douglas J. Hartman, Satdarshan P.S. Monga, Michael T. Lotze, George K. Gittes, Guo-Hua Fong, and Farzad Esni

Precise: This study identifies root signaling connections between hypoxia control and the Wnt and Smad4 pathways in early development of pancreatic cancer.

Enhanced Radiation Sensitivity in HPV-Positive Head and Neck Cancer

Precise: Activation of residual p53 in HPV+ head and neck cancers may explain why this type of disease has a relatively better outcome in patients.

4791

4801

Pathway-Based Serum microRNA Profiling and Survival in Patients with Advanced Stage Non–Small Cell Lung Cancer

Yan Wang, Jian Gu, Jack A. Roth, Michelle A.T. Hildebrandt, Scott M. Lippman, Yuanqing Ye, John D. Minna, and Xi Feng Wu

Precise: Accumulating evidence argues that microRNA signatures derived from blood serum may offer simple quantitative tools for clinical prognosis and therapeutic development in many settings.

A 20-Year Prospective Study of Plasma Prolactin as a Risk Marker of Breast Cancer Development

Shelley S. Tworoger, A. Heather Eliassen, Xuehong Zhang, Jing Qian, Patrick M. Sless, Bernard A. Rosner, and Susan E. Hankinson

Precise: Elevated levels of plasma prolactin are associated with an increased risk of breast cancer, but only for 10 years after assessment of this risk marker, supporting a role for prolactin at later stages in breast carcinogenesis.

4810

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

Novel Recombinant Human B7-H4 Antibodies Overcome Tumoral Immune Escape to Potentiate T-Cell Antitumor Responses

Denarda Dangaj, Evripidis Lanitis, Aizhi Zhao, Shree Joshi, Yi Cheng, Raphael Sandalzopoulos, Hyun-Jeong Ra, Gwenn Danet-Desnoyers, Daniel J. Powell, Jr, and Nathalie Scholler

Precise: Blockade of inhibitory T-cell receptor signals in the same general family as the CTLA-4 molecule targeted by ipilimumab (Yervoy) may offer a paradigm for simultaneous targeting of not only tumor cells, but also tumor-associated macrophages that drive immune escape.

4820

Transcription Poisoning by Topoisomerase I Is Controlled by Gene Length, Splice Sites, and miR-142-3p

Stéphanie Solier, Michael C. Ryan, Scott E. Martin, Sudhir Varma, Kurt W. Kohn, Hongfang Liu, Barry R. Zeeberg, and Yves Pommier

Precise: Camptothecins used in cancer therapy may act to a major extent by targeting a p53-dependent microRNA.

4830

C-RAF Mutations Confer Resistance to RAF Inhibitors

Rajee Antony, Caroline M. Emery, Allison M. Sawyer, and Levi A. Garraway

Precise: These findings may provide a rationale for the future development of allosteric or pan-RAF inhibitors that disrupt the RAF dimerization interface.

4840

Pivotal Role of the Lipid Raft SK3–C-RAF Complex in Human Cancer Cell Migration and Bone Metastases

Precise: This study links a therapeutically targetable potassium channel to bone metastasis, a common feature of advanced breast and prostate cancers that is generally untreatable.

4850

Docetaxel Conjugate Nanoparticles That Target α-Smooth Muscle Actin–Expressing Stromal Cells Suppress Breast Cancer Metastasis

Mami Murakami, Mark J. Ernsting, Elisabeth Undrzs, Nathan Holwell, Warren D. Foltz, and Shyh-Dar Li

Precise: A novel cytotoxic nanoparticle that specifically degrades stromal elements in the tumor microenvironment exhibits potent antitumor activity.

4860
TUMOR AND STEM CELL BIOLOGY

4872
LIN28 Expression in Malignant Germ Cell Tumors Downregulates let-7 and Increases Oncogene Levels
Précis: This study defines a common oncogenic pathway in malignant germ cell tumors (GCT) and offers preclinical initial proof of concept for its targeting potential in this setting.

4885
A Renewable Tissue Resource of Phenotypically Stable, Biologically and Ethnically Diverse, Patient-Derived Human Breast Cancer Xenograft Models
Xiaomei Zhang, Sofie Claerhout, Aleix Pratt, Lacey E. Dobrolecki, Ivana Petrovic, Qing Lai, Melissa D. Landis, Lisa Wiechmann, Rachel Schiff, Mario Giuliano, Helen Wong, Suzanne W. Fuqua, Alejandro Contreras, Carolina Gutierrez, Anna Tsimelzon, Susan G. Hilsenbeck, Edward S. Chen, Pavel Zuloaga, Chad A. Shaw, Charles M. Perou, Michael T. Lewis
Précis: This well-characterized collection of human breast cancer xenografts will serve as a foundation for conduct of “animal clinical trials” to evaluate experimental therapeutics, as well as a resource for mechanistic studies of treatment resistance and metastasis.

4898
elf4B Phosphorylation by Pim Kinases Plays a Critical Role in Cellular Transformation by Ab1 Oncogenes
Jianling Yang, Jun Wang, Ke Chen, Guijie Guo, Ruijiao Xi, Paul B. Rothman, Douglas Whitten, Lianfeng Zhang, Shile Huang, and Ji-Long Chen
Précis: Results identify the translation initiation factor elf4B as a critical substrate of Pim kinases, which mediate the activity of Ab1 oncogenes, suggesting this factor as a candidate therapeutic target in Ab1-induced cancers.

4909
Canonical Wnt Signaling Is Required for Pancreatic Carcinogenesis
Yaqing Zhang, John P. Morris IV, Wei Yan, Heather K. Schofield, Austin Gurney, Diane M. Simeone, Sarah E. Millar, Timothy Hoey, Matthias Hebrok, and Marina Pasca di Magliano
Précis: This study establishes a causal role for WNT pathway signaling in the development and progression of K-ras-initiated pancreatic cancers, with therapeutic implications for the use of WNT pathway antagonists in this deadly disease.

4923
Aptamer Identification of Brain Tumor–Initiating Cells
Youngmi Kim, Qulian Wu, Petra Hamerlik, Masahiro Hitomi, Andrew E. Sloan, Gene H. Barnett, Robert J. Weil, Patrick Leahy, Anita B. Hjelmeland, and Jeremy N. Rich
Précis: This work illustrates a general method to prospectively isolate tumor-initiating cells, the imaging and targeting of which may be important for improving therapeutic outcomes in individual patients.

4937
Loss of p120-Catenin Induces Metastatic Progression of Breast Cancer by Inducing Anoikis Resistance and Augmenting Growth Factor Receptor Signaling
Ron C.J. Schackmann, Sjoerd Klarenbeek, Eva J. Vlug, Suzan Stelloo, Miranda van Amersfoort, Milou Tenhagen, Tanya M. Braumuller, Jeroen F. Vermeulen, Petra van der Groep, Ton Peeters, Edken van der Wall, Paul J. van Diest, Jos Jonkers, and Patrick W.B. Derksen
Précis: Based on conditional mouse models of metastatic breast cancer that are immunocompetent and clinically relevant, the current study provides an alternate rationale for therapeutic intervention of p120-catenin negative invasive breast cancer.

4950
TRAF6 Upregulates Expression of HIF-1α and Promotes Tumor Angiogenesis
Heng Sun, Xue-Bing Li, Ya Meng, Li Fan, Min Li, and Jing Fang
Précis: A factor well studied in the TNF response and implicated in innate and adaptive immune control is established in this study to control tumor angiogenesis.

4960
Retraction: Sp100 as a Potent Tumor Suppressor: Accelerated Senescence and Rapid Malignant Transformation of Human Fibroblasts through Modulation of an Embryonic Stem Cell Program

4962
Correction: IKK4a/ARF Inactivation with Activation of the NF-κB/IL-6 Pathway Is Sufficient to Drive the Development and Growth of Angiosarcoma
ABOUT THE COVER

Schematic representation of the IRE1α-dependent activation loop that controls tumor cell adaptation. Tumor cell is presented in light gray, stromal cells in dark gray. Proteins are represented by circles, with upregulation in green and downregulation in red. Connections following stress-mediated activation of IRE1α are presented in green for activation and red for inhibition. For details, see article by Pluquet and colleagues on page 4732.
Cancer Research

73 (15)

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/73/15

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.