BREAKING ADVANCES

| 4963 | Highlights from Recent Cancer Literature |

REVIEWS

| 4965 | Targeting the Tumor Microenvironment: From Understanding Pathways to Effective Clinical Trials |
| 4978 | p63, Sharp1, and HIFs: Master Regulators of Metastasis in Triple-Negative Breast Cancer |

PERSPECTIVE

| 4982 | Early B-Cell Differentiation in Merkel Cell Carcinomas: Clues to Cellular Ancestry |

MEETING REPORT

| 4988 | The 19th Annual Prostate Cancer Foundation Scientific Retreat: Meeting Report |

INTEGRATED SYSTEMS AND TECHNOLOGIES

| 4992 | Metabolic Characterization of Hepatocellular Carcinoma Using Nontargeted Tissue Metabolomics |

MICROENVIRONMENT AND IMMUNOLOGY

| 5003 | Myeloid-Derived Suppressor Cells as a Vehicle for Tumor-Specific Oncolytic Viral Therapy |
| 5016 | TGF-β Modulates Ovarian Cancer Invasion by Upregulating CAF-Derived Versican in the Tumor Microenvironment |

MOLECULAR AND CELLULAR PATHOBIOLOGY

| 5029 | Gene Profiling of Canine B-Cell Lymphoma Reveals Germinal Center and Postgerminal Center Subtypes with Different Survival Times, Modeling Human DLBCL |

Précis: This preclinical study highlights the efficacy of a specific myeloid cell type to serve as a key delivery vehicle for oncolytic viruses that significantly improves tumor killing, prolonging survival and minimizing toxicity.

Précis: These findings suggest a central mechanism through which TGF-β-targeted therapies may alter the invasive capacity of cancer cells by acting through their microenvironment.

Précis: A comprehensive metabolic study of hepatocellular carcinoma defines two novel candidate metabolic biomarkers for this disease.

Précis: This study reveals the remarkable molecular similarity between human and canine forms of a certain type of B-cell lymphoma, overcoming limitations in existing models that have impeded the advancement of etiologic and therapeutic insights.
Extracellular RNA Liberates Tumor Necrosis Factor-α to Promote Tumor Cell Trafficking and Progression

Silvia Fischer, Sabine Gesterich, Barbara Griemert, Anne Schänzer, Till Acker, Hellmut G. Augustin, Anna-Karin Olsson, and Klaus T. Preissner

Precis: These findings establish crucial functions for extracellular RNA released from tumor cells in driving invasion and progression, and suggest in vivo applications for RNase1 as a provocative therapeutic approach.
RHPN2 Drives Mesenchymal Transformation in Malignant Glioma by Triggering RhoA Activation
Carla Danussi, Uri David Akavia, Francesco Niola, Andreja Jovic, Anna Lasorella, Dana Pe'er, and Antonio Iavarone

Précis: These results identify a key genetic module promoting the most aggressive cancer phenotype in glioblastoma patients, leading to the worst outcomes.

PREVENTION AND EPIDEMIOLOGY

A Sequence Polymorphism in miR-608 Predicts Recurrence after Radiotherapy for Nasopharyngeal Carcinoma
Jian Zheng, Jieqiong Deng, Mang Xiao, Lei Yang, Liyuan Zhang, Yonghe You, Min Hu, Na Li, Hongchun Wu, Wei Li, Jiachun Lu, and Yifeng Zhou

Précis: A single-nucleotide polymorphism in a microRNA that affects chromatid break repair can predict clinical outcomes after radiotherapy in nasopharyngeal cancer, with potentially broader implications for other DNA damaging cancer therapies.

Gleason Grade Progression Is Uncommon

Précis: These findings suggest that prostate tumor grade may be established early in tumorigenesis, with one implication being that patients newly diagnosed with early-stage and lower-grade disease may feel more comfortable on an active surveillance protocol.

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

A Novel Class of Anticancer Compounds Targets the Actin Cytoskeleton in Tumor Cells

Précis: This study offers a preclinical proof of concept for small molecules that target the actin cytoskeleton of cancer cells as an efficacious treatment strategy.

RG7116, a Therapeutic Antibody That Binds the Inactive HER3 Receptor and Is Optimized for Immune Effector Activation
Christian Mirschberger, Christian B. Schiller, Michael Schräm, Nikolaos Dimoudis, Thomas Friess, Christian A. Gerdes, Ulrike Reiff, Valeria Litke, Gabriele Hoelzlswimmer, Irene Kolm, Karl-Peter Hopfner, Gerhard Niederfellner, and Birgit Bossenmaier

Précis: As a central integrator of the EGF family receptor system in cancer, HER3 offers an appealing therapeutic target in many types of human cancer.

Inhibitor-Sensitive FGFR2 and FGFR3 Mutations in Lung Squamous Cell Carcinoma

Précis: These findings provide a rationale to target certain lung or head and neck squamous cell carcinomas with FGFR inhibitors that are currently in clinical trials, possibly identifying patient populations that may benefit the most.

Cotargeting Androgen Receptor and Clusterin Delays Castrate-Resistant Prostate Cancer Progression by Inhibiting Adaptive Stress Response and AR Stability
Hiroaki Matsumoto, Yoshiai Yamamoto, Masaki Shiota, Hidetoshi Kuruma, Eliana Berald, Hideyasu Matsuyama, Amina Zoubie, and Martin Gleave

Précis: This study offers a mechanism-based strategy to leverage the therapeutic effects of androgen receptor antagonists in advanced prostate cancer, which remains a deadly scourge.

mTOR Signaling Feedback Modulates Mammary Epithelial Differentiation and Restrains Invasion Downstream of PTEN Loss
Susmita Ghosh, Lidenys Varela, Akshay Sood, Ben Ho Park, and Tamara L. Lotan

Précis: This report suggests additional new cautions regarding the use of mTOR inhibitors for cancer treatment, contributing to ongoing controversies about their potential utility.
Manganoporphyrins Increase Ascorbate-Induced Cytotoxicity by Enhancing H₂O₂ Generation
Malvika Rawal, Samuel R. Schroeder, Brett A. Wagner, Cameron M. Cushing, Jessemae L. Welsh, Anna M. Button, Juan Du, Zita A. Sibenaller, Garry R. Buettner, and Joseph J. Cullen
Précis: A class of porphyrins being developed as superoxide dismutase mimics have the potential to safely leverage the anticancer effects of pharmacologic ascorbate therapy.

Intratumoral Modeling of Gefitinib Pharmacokinetics and Pharmacodynamics in an Orthotopic Mouse Model of Glioblastoma
Jyoti Sharma, Hua Lv, and James M. Gallo
Précis: The major issue of heterogeneity in solid tumors, having been characterized yet again by deep sequencing studies, dramatically affects intratumoral drug activities, for which better models are needed to enhance our understanding.

Potassium Channel KCNA1 Modulates Oncogene-Induced Senescence and Transformation
Hélène Lallet-Daher, Clotilde Wiel, Delphine Gitenay, Naveenan Navaratnam, Arnaud Augert, Benjamin Le Calvé, Stéphanie Verbeke, David Carling, Sébastien Aubert, David Vendrieux, and David Bernard
Précis: This study identifies a novel tumor suppressor pathway that restricts oncogenesis by triggering premature senescence.

CTEN Prolongs Signaling by EGFR through Reducing Its Ligand-Induced Degradation
Shiao-Ya Hong, Yi-Ping Shih, Tianhong Li, Kermit L. Carraway III, and Su Hao Lo
Précis: The most effective therapeutic targeting of EGFR for cancer therapy will likely be based in part on an understanding of the epigenetic conditions that contribute to its effective stabilization.

O-GlcNAc Transferase Integrates Metabolic Pathways to Regulate the Stability of c-MYC in Human Prostate Cancer Cells
Harri M. Itkonen, Sarah Minner, Ingrid J. Guldvik, Mareike Julia Sandmann, Maria Christina Tsourlakis, Viktor Berge, Aud Svindland, Thorsten Schliom, and Ian G. Mills
Précis: Targeting a protein glycosylation pathway that is dysregulated by metabolic flux in cancer cells blocks MYC and inhibits cancer cell proliferation, possibly offering a broad-based anticancer strategy.

JAK-STAT Blockade Inhibits Tumor Initiation and Clonogenic Recovery of Prostate Cancer Stem-like Cells
Paula Kroon, Paul A. Berry, Michael J. Stower, Greta Rodrigues, Vincent M. Mann, Matthew Simms, Deepak Bhasin, Somnudararaj Chettiar, Chenglong Li, Pui-Kai Li, Norman J. Maitland, and Anne T. Collins
Précis: The most primitive cells in prostate cancer require STAT3 for survival, further rationalizing this molecule as a therapeutic target to treat advanced prostate cancer.
ABOUT THE COVER

The actin cytoskeleton, due to its role in many processes involved in cellular transformation, has long been a sought after anticancer target, yet attempts to develop such compounds have been hampered by unacceptable toxicity. By targeting the other core polymer system of the microfilaments, tropomyosin, it is possible to discriminate between actin filaments required for sarcomeric function and those required for tumor growth. In silico modeling shows the predicted association of the first in class anti-tropomyosin compound, TR100, with the C-terminus of a cancer-associated tropomyosin, Tm5NM1. The interaction between Tm5NM1 and TR100 results in disruption of actin filament organization and death of tumor cells, both in vitro and in vivo. For details, see article by Stehn and colleagues on page 5169.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/73/16

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.