Contents

Cancer Research
August 15, 2013 • Volume 73 • Number 16

BREAKING ADVANCES
4963 Highlights from Recent Cancer Literature

REVIEWS
4965 Targeting the Tumor Microenvironment: From Understanding Pathways to Effective Clinical Trials
Hua Fang and Yves A. DeClerck

4978 p63 Sharp1, and HIFs: Master Regulators of Metastasis in Triple-Negative Breast Cancer
Stefano Piccolo, Elena Enzo, and Marco Montagner

PERSPECTIVE
4982 Early B-Cell Differentiation in Merkel Cell Carcinomas: Clues to Cellular Ancestry
Axel zur Hausen, Dorit Rennspiess, Veronique Winnepenninckx, Ernst-Jan Speel, and Anna Kordelia Kurz

MEETING REPORT
4988 The 19th Annual Prostate Cancer Foundation Scientific Retreat: Meeting Report
Guneet Walia, Kenneth J. Pienta, Jonathan W. Simons, and Howard R. Soule

INTEGRATED SYSTEMS AND TECHNOLOGIES
4992 Metabolic Characterization of Hepatocellular Carcinoma Using Nontargeted Tissue Metabolomics
Qiang Huang, Yexiong Tan, Peiyuan Yin, Guozhu Ye, Peng Gao, Xin Lu, Hongyang Wang, and Guowang Xu
Précis: A comprehensive metabolic study of hepatocellular carcinoma defines two novel candidate metabolic biomarkers for this disease.

MICROENVIRONMENT AND IMMUNOLOGY
5003 Myeloid-Derived Suppressor Cells as a Vehicle for Tumor-Specific Oncolytic Viral Therapy
Samuel Eisenstein, Brian A. Coakley, Karen Briley-Saebo, Ge Ma, Hui-ming Chen, Marcia Meseck, Stephen Ward, Celia Divino, Savio Woo, Shu-Hsia Chen, and Ping-Ying Pan
Précis: This preclinical study highlights the efficacy of a specific myeloid cell type to serve as a key delivery vehicle for oncolytic viruses that significantly improves tumor killing, prolonging survival and minimizing toxicity.

5016 TGF-β Modulates Ovarian Cancer Invasion by Upregulating CAF-Derived Microenvironment
Tsz-Lun Yeung, Cecilia S. Leung, Kwong-Kwok Wong, Goli Samimi, Melissa S. Thompson, Jinsong Liu, Tarrik M. Zaid, Sue Ghosh, Michael J. Birrer, and Samuel C. Mok
Précis: These findings suggest a central mechanism through which TGF-β-targeted therapies may alter the invasive capacity of cancer cells by acting through their microenvironment.

MOLECULAR AND CELLULAR PATHOBIOLOGY
5029 Gene Profiling of Canine B-Cell Lymphoma Reveals Germinal Center and Postgerminal Center Subtypes with Different Survival Times, Modeling Human DLBCL
Kristy L. Richards, Alison A. Motsinger-Reif, Hsiao-Wei Chen, Yuri Fedoriw, Cheng Fan, Dahlia M. Nielsen, George W. Small, Rachael Thomas, Chris Smith, Sandeep S. Dave, Charles M. Perou, Matthew Breen, Luke B. Borst, and Steven E. Suter
Précis: This study reveals the remarkable molecular similarity between human and canine forms of a certain type of B-cell lymphoma, overcoming limitations in existing models that have impeded the advancement of etiologic and therapeutic insights.
Extracellular RNA Liberates Tumor Necrosis Factor-α to Promote Tumor Cell Trafficking and Progression

Silvia Fischer, Sabine Gesichert, Barbara Griemert, Anne Schänzer, Till Acker, Hellmut G. Augustin, Anna-Karin Olsson, and Klaus T. Preissner

Précis: These findings establish crucial functions for extracellular RNA released from tumor cells in driving invasion and progression, and suggest in vivo applications for RNase1 as a provocative therapeutic approach.

Critical Tumor Suppressor Function Mediated by Epithelial Mig-6 in Endometrial Cancer

Tae Hoon Kim, Dong-Kee Lee, Sung-Nam Cho, Grant D. Orvis, Richard R. Behringer, John P. Lydon, Bon Jeong Ku, Adrienne S. McCampbell, Russell R. Broadus, and Jae-Wook Jeong

Précis: This study provides insights into how progesterone prevents endometrial cancer, a long-standing question for which mechanistic knowledge might advance thinking about how to use this hormone in treatment.

Acquired Expression of NFATc1 Downregulates E-Cadherin and Promotes Cancer Cell Invasion

Tsukasa Oikawa, Atsuko Nakamura, Nobuyuki Onishi, Taketo Yamada, Koichi Matsuo, and Hideyuki Saya

Précis: Carcinoma cells that switch on expression of an important hematopoietic transcription factor acquire new capacities for invasive movement and growth.

14-3-3 Proteins Modulate the ETS Transcription Factor ETV1 in Prostate Cancer

Sangphil Oh, Sook Shin, Stan A. Lightfoot, and Ralf Janknecht

Précis: This article provides mechanistic insight into the pathophysiology of multiple tumors, including prostate cancer and melanomas.

The DREAM Complex Mediates GIST Cell Quiescence and Is a Novel Therapeutic Target to Enhance Imatinib-Induced Apoptosis

Sergei Boichuk, Joshua A. Parry, Kathleen R. Makiebki, Larisa Litovchick, Julianne L. Baron, James P. Zewe, Agnieszka Wozniak, Keith R. Mehalek, James A. DeCaprio, and Anette Duensing

Précis: Dissecting the molecular pathways that lead to tumor cell quiescence after targeted therapies leads to novel treatment strategies that potentially can extend survival.

Reprogramming the Chromatin Landscape: Interplay of the Estrogen and Glucocorticoid Receptors at the Genomic Level

Tina B. Miranda, Ty C. Yoss, Myong-Hee Sung, Songjoon Baek, Sam John, Mary Hawkins, Lars Grøntved, R. Louis Schiltz, and Gordon L. Hager

Précis: These results define an epigenetic mechanism that can explain how the estrogen and glucocorticoid receptors can dictate the binding patterns of other steroid receptors across the genome.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>5140</td>
<td>RHPN2 Drives Mesenchymal Transformation in Malignant Glioma by Triggering RhoA Activation</td>
<td>Carla Danussi, Uri David Akavia, Francesco Niola, Andreja Jovic, Anna Lasorella, Dana Pe’er, and Antonio Iavarone</td>
<td>These results identify a key genetic module promoting the most aggressive cancer phenotype in glioblastoma patients, leading to the worst outcomes.</td>
</tr>
<tr>
<td>5151</td>
<td>A Sequence Polymorphism in miR-608 Predicts Recurrence after Radiotherapy for Nasopharyngeal Carcinoma</td>
<td>Jian Zheng, Jieqiong Deng, Mang Xiao, Lei Yang, Liyuan Zhang, Yonghe You, Min Hu, Na Li, Hongchun Wu, Wei Li, Jiachen Lu, and Yifeng Zhou</td>
<td>These results identify a key genetic module promoting the most aggressive cancer phenotype in glioblastoma patients, leading to the worst outcomes.</td>
</tr>
<tr>
<td>5163</td>
<td>Gleason Grade Progression Is Uncommon</td>
<td>Kathryn L. Penney, Meir J. Stampfer, Jaquelyn L. Jahn, Jennifer A. Sinnott, Richard Flavin, Jennifer R. Rider, Stephen Finn, Edward Giovannucci, Hongchun Wu, Min Hu, Na Li, Hongchun Wu, Wei Li, Jiachen Lu, and Yifeng Zhou</td>
<td>These findings suggest that prostate tumor grade may be established early in tumorigenesis, with one implication being that patients newly diagnosed with early-stage and lower-grade disease may feel more comfortable on an active surveillance protocol.</td>
</tr>
<tr>
<td>5169</td>
<td>A Novel Class of Anticancer Compounds Targets the Actin Cytoskeleton in Tumor Cells</td>
<td>Justine R. Stehn, Nikolas K. Haass, Teresa Bonello, Melissa Desouza, Gregg Kottyan, Herbert Treutlein, Jun Zeng, Paula R.B. Nascimento, Vanessa B. Sequeira, Tanya L. Butler, Munif Allanson, Thomas Fath, Timothy A. Hill, Adam Mccluskey, Galina Schvavor, Stephen J. Palmer, Edna C. Hardeman, David Winlaw, Vivienne E. Reeve, Ian Dixon, Wolfgang Weninger, Timothy P. Cripe, and Peter W. Gunning</td>
<td>This study offers a preclinical proof of concept for small molecules that target the actin cytoskeleton of cancer cells as an efficacious treatment strategy.</td>
</tr>
<tr>
<td>5183</td>
<td>RG7116, a Therapeutic Antibody That Binds the Inactive HER3 Receptor and Is Optimized for Immune Effector Activation</td>
<td>Christian Mirschberger, Christian B. Schiller, Michael Schraml, Nikolaos Dimoudis, Thomas Friess, Christian A. Gerdes, Ulrike Reiff, Valeria Litable, Gabriele Hoelzlswimmer, Irene Kolm, Karl-Peter Hopfner, Gerhard Niederfeller, and Birgit Bossenmaier</td>
<td>These findings identify a key genetic module promoting the most aggressive cancer phenotype in glioblastoma patients, leading to the worst outcomes.</td>
</tr>
<tr>
<td>5195</td>
<td>Inhibitor-Sensitive FGFR2 and FGFR3 Mutations in Lung Squamous Cell Carcinoma</td>
<td>Rachel G. Liao, Joonil Jung, Jeremy Tchaicha, Matthew D. Wiltkerson, Andrey Sivachenko, Ellen M. Beauchamp, Qingqiong Liu, Trevor J. Pugh, Chandra Sekhar Pedamalhu, D. Neil Hayes, Nathanael S. Gray, Gad Getz, Kwok-Kin Wong, Robert I. Haddad, Matthew Meyerson, and Peter S. Hammerman</td>
<td>These findings identify a central integrator of the EGF family receptor system in cancer, HER3 offers an appealing therapeutic target in many types of human cancer.</td>
</tr>
<tr>
<td>5206</td>
<td>Cotargeting Androgen Receptor and Clusterin Delays Castrate-Resistant Prostate Cancer Progression by Inhibiting Adaptive Stress Response and AR Stability</td>
<td>Hiroaki Matsumoto, Yoshiaki Yamamoto, Masaki Shiota, Hidetoshi Kurumia, Eliana Beraldi, Hideoa Matsuyama, Amina Zoubedida, and Martin Gleave</td>
<td>These findings identify a central integrator of the EGF family receptor system in cancer, HER3 offers an appealing therapeutic target in many types of human cancer.</td>
</tr>
<tr>
<td>5218</td>
<td>mTOR Signaling Feedback Modulates Mammary Epithelial Differentiation and Restrains Invasion Downstream of PTEN Loss</td>
<td>Susmita Ghosh, Lidenys Varela, Akshay Sood, Ben Ho Park, and Tamara L. Lotan</td>
<td>These findings identify a central integrator of the EGF family receptor system in cancer, HER3 offers an appealing therapeutic target in many types of human cancer.</td>
</tr>
</tbody>
</table>
Manganoporphyrins Increase Ascorbate-Induced Cytotoxicity by Enhancing H₂O₂ Generation
Malvika Rawal, Samuel R. Schroeder, Brett A. Wagner, Cameron M. Cushing, Jessemnae L. Welsh, Anna M. Button, Juan Du, Zita A. Sibenaller, Garry R. Buettner, and Joseph J. Cullen
Précis: A class of porphyrins being developed as superoxide dismutase mimics have the potential to safely leverage the anticancer effects of pharmacologic ascorbate therapy.

Intratumoral Modeling of Gefitinib Pharmacokinetics and Pharmacodynamics in an Orthotopic Mouse Model of Glioblastoma
Jyoti Sharma, Hua Lv, and James M. Gallo
Précis: The major issue of heterogeneity in solid tumors, having been characterized yet again by deep sequencing studies, dramatically affects intratumoral drug activities, for which better models are needed to enhance our understanding.

Potassium Channel KCNA1 Modulates Oncogene-Induced Senescence and Transformation
Hélène Lallet-Daher, Clotilde Wiel, Delphine Gitenay, Naveenan Navaratnam, Arnaud Augert, Benjamin Le Calvé, Stéphanie Verbeke, David Carling, Sébastien Aubert, David Vendrieux, and David Bernard
Précis: This study identifies a novel tumor suppressor pathway that restricts oncogenesis by triggering premature senescence.

CTEN Prolongs Signaling by EGFR through Reducing Its Ligand-Induced Degradation
Shiao-Ya Hong, Yi-Ping Shih, Tianhong Li, Kermit L. Carraway III, and Su Hao Lo
Précis: The most effective therapeutic targeting of EGFR for cancer therapy will likely be based in part on an understanding of the epigenetic conditions that contribute to its effective stabilization.

O-GlcNAc Transferase Integrates Metabolic Pathways to Regulate the Stability of c-MYC in Human Prostate Cancer Cells
Harri M. Itkonen, Sarah Minner, Ingrid J. Guldvik, Mareike Julia Sandmann, Maria Christina Tsourlakis, Viktor Berge, Aud Svinland, Thorsten Schlimm, and Ian G. Mills
Précis: Targeting a protein glycosylation pathway that is dysregulated by metabolic flux in cancer cells blocks MYC and inhibits cancer cell proliferation, possibly offering a broad-based anticancer strategy.

JAK-STAT Blockade Inhibits Tumor Initiation and Clonogenic Recovery of Prostate Cancer Stem-like Cells
Paula Kroon, Paul A. Berry, Michael J. Stower, Greta Rodrigues, Vincent M. Mann, Matthew Simms, Deepak Bhasin, Somu Sivtarat, Chenglong Li, Pui-Kai Li, Norman J. Maitland, and Anne T. Collins
Précis: The most primitive cells in prostate cancer require STAT3 for survival, further rationalizing this molecule as a therapeutic target to treat advanced prostate cancer.

AC icon indicates Author Choice
For more information please visit www.aacrjournals.org
ABOUT THE COVER

The actin cytoskeleton, due to its role in many processes involved in cellular transformation, has long been a sought after anticancer target, yet attempts to develop such compounds have been hampered by unacceptable toxicity. By targeting the other core polymer system of the microfilaments, tropomyosin, it is possible to discriminate between actin filaments required for sarcomeric function and those required for tumor growth. *In silico* modeling shows the predicted association of the first in class anti-tropomyosin compound, TR100, with the C-terminus of a cancer-associated tropomyosin, Tm5NM1. The interaction between Tm5NM1 and TR100 results in disruption of actin filament organization and death of tumor cells, both *in vitro* and *in vivo*. For details, see article by Stehn and colleagues on page 5169.