Breaking Advances

4963 | Highlights from Recent Cancer Literature

Reviews

4965 | Targeting the Tumor Microenvironment: From Understanding Pathways to Effective Clinical Trials
Hua Fang and Yves A. DeClerck

4978 | p63 Sharp1, and HIFs: Master Regulators of Metastasis in Triple-Negative Breast Cancer
Stefano Piccolo, Elena Enzo, and Marco Montagner

Perspective

4982 | Early B-Cell Differentiation in Merkel Cell Carcinomas: Clues to Cellular Ancestry
Axel zur Hausen, Dorit Rennspiess, Veronique Winnepenninckx, Ernst-Jan Speel, and Anna Kordelia Kurz

Meeting Report

4988 | The 19th Annual Prostate Cancer Foundation Scientific Retreat: Meeting Report
Guneet Walia, Kenneth J. Pienta, Jonathan W. Simons, and Howard R. Soule

Integrated Systems and Technologies

4992 | Metabolic Characterization of Hepatocellular Carcinoma Using Nontargeted Tissue Metabolomics
Qiang Huang, Yexiong Tan, Peiyuan Yin, Guozhu Ye, Peng Gao, Xin Lu, Hongyang Wang, and Guowang Xu

Microenvironment and Immunology

5003 | Myeloid-Derived Suppressor Cells as a Vehicle for Tumor-Specific Oncolytic Viral Therapy
Samuel Eisenstein, Brian A. Coakley, Karen Briley-Saebo, Ge Ma, Hui-ming Chen, Marcia Meseck, Stephen Ward, Celia Divino, Savio Woo, Shu-Hsia Chen, and Ping-Ying Pan

Précis: This preclinical study highlights the efficacy of a specific myeloid cell type to serve as a key delivery vehicle for oncolytic viruses that significantly improves tumor killing, prolonging survival and minimizing toxicity.

5016 | TGF-β Modulates Ovarian Cancer Invasion by Upregulating CAF-Derived Microenvironment
Tsz-Lun Yeung, Cecilia S. Leung, Kwong-Kwok Wong, Goli Samimi, Melissa S. Thompson, Jinsong Liu, Tarrik M. Zaid, Sue Ghosh, Michael J. Birrer, and Samuel C. Mok

Précis: These findings suggest a central mechanism through which TGF-β-targeted therapies may alter the invasive capacity of cancer cells by acting through their microenvironment.

Molecular and Cellular Pathobiology

5029 | Gene Profiling of Canine B-Cell Lymphoma Reveals Germinal Center and Postgerminal Center Subtypes with Different Survival Times, Modeling Human DLBCL
Kristy L. Richards, Alison A. Motsinger-Reif, Hsiao-Wei Chen, Yuri Fedoriw, Cheng Fan, Dahlia M. Nielsen, George W. Small, Rachael Thomas, Chris Smith, Sandeep S. Dave, Charles M. Perou, Matthew Breen, Luke B. Borst, and Steven E. Suter

Précis: This study reveals the remarkable molecular similarity between human and canine forms of a certain type of B-cell lymphoma, overcoming limitations in existing models that have impeded the advancement of etiologic and therapeutic insights.
Extracellular RNA Liberates Tumor Necrosis Factor-α to Promote Tumor Cell Trafficking and Progression
Silvia Fischer, Sabine Gesierich, Barbara Grienert, Anne Schänzer, Till Acker, Hellmut G. Augustin, Anna-Karin Olsson, and Klaus T. Preissner

Precis: These findings establish crucial functions for extracellular RNA released from tumor cells in driving invasion and progression, and suggest in vivo applications for RNase1 as a provocative therapeutic approach.
RHPN2 Drives Mesenchymal Transformation in Malignant Glioma by Triggering RhoA Activation

Carla Danussi, Uri David Akavia, Francesco Niola, Andreja Jovic, Anna Lasorella, Dana Pe'er, and Antonio Iavarone

Précis: These results identify a key genetic module promoting the most aggressive cancer phenotype in glioblastoma patients, leading to the worst outcomes.

PREVENTION AND EPIDEMIOLOGY

A Sequence Polymorphism in miR-608 Predicts Recurrence after Radiotherapy for Nasopharyngeal Carcinoma

Jian Zheng, Jieqiong Deng, Mang Xiao, Lei Yang, Liyuan Zhang, Yonghe You, Min Hu, Na Li, Hongchun Wu, Wei Li, Jiachun Lu, and Yifeng Zhou

Précis: A single-nucleotide polymorphism in a microRNA that affects chromatid break repair can predict clinical outcomes after radiotherapy in nasopharyngeal cancer, with potentially broader implications for other DNA damaging cancer therapies.

Gleason Grade Progression Is Uncommon

Précis: These findings suggest that prostate tumor grade may be established early in tumorigenesis, with one implication being that patients newly diagnosed with early-stage and lower-grade disease may feel more comfortable on an active surveillance protocol.

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

A Novel Class of Anticancer Compounds Targets the Actin Cytoskeleton in Tumor Cells

Précis: This study offers a preclinical proof of concept for small molecules that target the actin cytoskeleton of cancer cells as an efficacious treatment strategy.

RG7116, a Therapeutic Antibody That Binds the Inactive HER3 Receptor and Is Optimized for Immune Effector Activation

Christian Mirschberger, Christian B. Schiller, Michael Schräml, Nikolaos Dimoudis, Thomas Friess, Christian A. Gerdes, Ulrike Reiff, Valeria Lifke, Gabriele Hoelzlswimmer, Irene Kolm, Karl-Peter Hopfner, Gerhard Niederfellner, and Birgit Bossenmaier

Précis: As a central integrator of the EGF family receptor system in cancer, HER3 offers an appealing therapeutic target in many types of human cancer.

Inhibitor-Sensitive FGFR2 and FGFR3 Mutations in Lung Squamous Cell Carcinoma

Précis: These findings provide a rationale to target certain lung or head and neck squamous cell carcinomas with FGFR inhibitors that are currently in clinical trials, possibly identifying patient populations that may benefit the most.

Cotargeting Androgen Receptor and Clusterin Delays Castrate-Resistant Prostate Cancer Progression by Inhibiting Adaptive Stress Response and AR Stability

Hiroaki Matsumoto, Yoshiaki Yamamoto, Masaki Shiota, Hidetoshi Kuruma, Eliana Beraldi, Hideyasu Matsuyama, Amina Zoubedi, and Martin Gleave

Précis: This study offers a mechanism-based strategy to leverage the therapeutic effects of androgen receptor antagonists in advanced prostate cancer, which remains a deadly scourge.

mTOR Signaling Feedback Modulates Mammary Epithelial Differentiation and Restrains Invasion Downstream of PTEN Loss

Susmita Ghosh, Lidenys Varela, Akshay Sood, Ben Ho Park, and Tamara L. Lotan

Précis: This report suggests additional new cautions regarding the use of mTOR inhibitors for cancer treatment, contributing to ongoing controversies about their potential utility.
Manganoporphyrins Increase Ascorbate-Induced Cytotoxicity by Enhancing H2O2 Generation

Malvika Rawal, Samuel R. Schroeder, Brett A. Wagner, Cameron M. Cushing, Jessica L. Welsh, Anna M. Button, Juan Du, Zita A. Sibenaller, Garry R. Buettner, and Joseph J. Cullen

Précis: A class of porphyrins being developed as superoxide dismutase mimics have the potential to safely leverage the anticancer effects of pharmacologic ascorbate therapy.

Intratumoral Modeling of Gefitinib Pharmacokinetics and Pharmacodynamics in an Orthotopic Mouse Model of Glioblastoma

Jyoti Sharma, Hua Lv, and James M. Gallo

Précis: The major issue of heterogeneity in solid tumors, having been characterized yet again by deep sequencing studies, dramatically affects intratumoral drug activities, for which better models are needed to enhance our understanding.

Potassium Channel KCNA1 Modulates Oncogene-Induced Senescence and Transformation

Hélène Lallet-Daher, Clotilde Wiel, Delphine Gitenay, Naveenan Navaratnam, Arnaud Augert, Benjamin Le Calvé, Stéphanie Verbeke, David Carling, Sébastien Aubert, David Vindrieux, and David Bernard

Précis: This study identifies a novel tumor suppressor pathway that restricts oncogenesis by triggering premature senescence.

CTEN Prolongs Signaling by EGFR through Reducing Its Ligand-Induced Degradation

Shiao-Ya Hong, Yi-Ping Shih, Tianhong Li, Kermit L. Carraway III, and Su Hao Lo

Précis: The most effective therapeutic targeting of EGFR for cancer therapy will likely be based in part on an understanding of the epigenetic conditions that contribute to its effective stabilization.

O-GlcNAc Transferase Integrates Metabolic Pathways to Regulate the Stability of c-MYC in Human Prostate Cancer Cells

Harri M. Itkonen, Sarah Minner, Ingrid J. Guldvik, Mareike Julia Sandmann, Maria Christina Tsourlakis, Viktor Berge, Aud Svindland, Thorsten Schlomm, and Ian G. Mills

Précis: Targeting a protein glycosylation pathway that is dysregulated by metabolic flux in cancer cells blocks MYC and inhibits cancer cell proliferation, possibly offering a broad-based anticancer strategy.

JAK-STAT Blockade Inhibits Tumor Initiation and Clonogenic Recovery of Prostate Cancer Stem-like Cells

Paula Kroon, Paul A. Berry, Michael J. Stower, Greta Rodrigues, Vincent M. Mann, Matthew Simms, Deepak Bhasin, Somasundaram Chettiar, Chenglong Li, Pui-Kai Li, Norman J. Maitland, and Anne T. Collins

Précis: The most primitive cells in prostate cancer require STAT3 for survival, further rationalizing this molecule as a therapeutic target to treat advanced prostate cancer.

AC icon indicates Author Choice

For more information please visit www.aacrjournals.org
ABOUT THE COVER

The actin cytoskeleton, due to its role in many processes involved in cellular transformation, has long been a sought after anticancer target, yet attempts to develop such compounds have been hampered by unacceptable toxicity. By targeting the other core polymer system of the microfilaments, tropomyosin, it is possible to discriminate between actin filaments required for sarcomeric function and those required for tumor growth. In silico modeling shows the predicted association of the first in class anti-tropomyosin compound, TR100, with the C-terminus of a cancer-associated tropomyosin, Tm5NM1. The interaction between Tm5NM1 and TR100 results in disruption of actin filament organization and death of tumor cells, both in vitro and in vivo. For details, see article by Stehn and colleagues on page 5169.