BREAKING ADVANCES
5607
Highlights from Recent Cancer Literature

REVIEWS
5609
Circular RNA and miR-7 in Cancer
Thomas B. Hansen, Jørgen Kjems, and Christian K. Damgaard

5613
Antitumor Immunity: Easy as 1, 2, 3 with Monoclonal Bispecific Trifunctional Antibodies?
John Maher and Antonella A. Adami

PERSPECTIVE
5618
The Relationship between Tumor Blood Flow, Angiogenesis, Tumor Hypoxia, and Aerobic Glycolysis
Leif Østergaard, Anna Tietze, Thomas Nielsen, Kim Ryun Drasbek, Kim Mouridsen, Sune Nurhaj Jespersen, and Michael R. Horsman

PRIORITY REPORT
5625
A Novel Algorithm for Simplification of Complex Gene Classifiers in Cancer

5633
Infiltrating Macrophages Promote Prostate Tumorigenesis via Modulating Androgen Receptor-Mediated CCL4–STAT3 Signaling
Lei-Ya Fang, Kouji Izumi, Kuo-Pao Lai, Liang Liang, Lei Li, Hiroshi Miyamoto, Wen-Jye Lin, and Chaweshang Chang

5657
Adipocyte-Derived Fibroblasts Promote Tumor Progression and Contribute to the Desmoplastic Reaction in Breast Cancer
Ludivine Bochet, Camille Lehuédé, Stéphanie Dauviller, Yuan Yuan Wang, Béatrice Dirat, Victor Laurent, Cédric Dray, Romain Guiet, Isabelle Mariscomonne-Parini, Sophie Le Gonidec, Bettina Coudere, Ghislaine Escourrou, Philippe Valet, and Catherine Muller

5669
Tumor Microenvironmental Conversion of Natural Killer Cells into Myeloid-Derived Suppressor Cells
Young-Jun Park, Boyeong Song, Yun-Sun Kim, Eun-Kyung Kim, Jeong-Mi Lee, Ga-Eun Lee, Jae-Ouk Kim, Yeon-Jeong Kim, Woo-Sung Chang, and Chang-Yuil Kang

MOLECULAR AND CELLULAR PATHOBIOLOGY
5682
Reg3β Deficiency Impairs Pancreatic Tumor Growth by Skewing Macrophage Polarization
Meritxell Gironea, Carlos Calvo, Anna Fernández, Daniel Closa, Juan L. Iovanna, Joan Rosello-Catafau, and Emma Folch-Puy

Précis: These findings suggest a new application for IFN-α in cancer treatment by using it to inactivate T-regulatory cells in combination with vaccines as a means to degrade immune escape barriers that limit therapeutic responses.

Précis: This article reports the discovery of a new stromal cell population in the breast tumor microenvironment that may offer unique new opportunities for targeted therapy in breast cancer.

Précis: Striking findings in this study reveal new insights into how tumor cells hijack their local immune microenvironment to escape immune surveillance.

Précis: The findings reported in this article may guide further clinical research based on the inhibition of the Reg3β in the treatment pancreatic cancer.

Précis: These important findings establish that androgen receptor signaling drives the development of early prostate tumors by modulating the function of infiltrating macrophages in the microenvironment, with attendant effects on downstream inflammatory signaling.
Oncogenic Herpesvirus HHV-8 Promotes Androgen-Independent Prostate Cancer Growth

Justin G. Mygatt, Adit Singhal, Gauthaman Sukumar, Clifton L. Dalgar, and Johnan A.R. Kaleeba

Précis: This provocative study prompts deeper investigations of the relationship between infection with human herpesvirus 8 (HHV-8) and risks of advanced prostate cancer, given findings that HHV-8 infection of primary prostate epithelial cells can drive several features of androgen-independent metastatic disease.

SOX10 Ablation Arrests Cell Cycle, Induces Senescence, and Suppresses Melanomagenesis

Précis: Definition of a core determining factor for cell-cycle control in melanoma suggests a rational new direction for targeted treatment or prevention of this disease.

Epimorphin Is a Novel Regulator of the Progesterone Receptor Isoform-A

Jamie L. Bascom, Derek C. Radisky, Eileen Koh, Jimmie E. Fata, Alvin Lo, Hidetoshi Mori, Neda Roosta, Yohei Hirai, and Mina J. Bissell

Précis: This study offers new insights into control of the expression of the progesterone receptor, a key driver and prognostic determinant in hormone-dependent breast cancers.

Rapid Induction of Lung Adenocarcinoma by Fibroblast Growth Factor 9 Signaling through FGF Receptor 3

Yongjun Yin, Tomoko Betsuyaku, Joel R. Garbow, Jinbai Miao, Ramaswamy Govindan, and David M. Ornitz

Précis: These findings highlight a mouse model of lung adenocarcinomas that form near the bronchioalveolar duct junction that may be useful to evaluate a growing number of experimental anticancer drugs that interfere with FGF signaling.

Akt SUMOylation Regulates Cell Proliferation and Tumorigenesis

Bong Li, Jie Wei, Cong Jiang, Dongmei Liu, Lu Deng, Kai Zhang, and Ping Wang

Précis: This important study reveals a fundamental feature for controlling the function of Akt, which is broadly activated in many human cancers where it contributes to survival, invasion, and therapeutic resistance.

c-Kit Is Suppressed in Human Colon Cancer Tissue and Contributes to L1-Mediated Metastasis

Nancy Gavert, Anna Shvab, Michal Sheffer, Amir Ben-Shmuel, Gal Haase, Etszer Bakos, Eytan Domany, and Avri Ben-Ze’ev

Précis: This report challenges the paradigm of c-Kit as an oncogene in demonstrating the importance of its suppression in colorectal cancer for its metastasis to liver, the most common site for dissemination of this disease.
Stem Cell Differentiation and Lumen Formation in Colorectal Cancer Cell Lines and Primary Tumors
Neil Ashley, Trevor M. Yeung, and Walter F. Bodmer

Precis: An in vitro model for functional characterization of colorectal stem-like cells and their differentiation also offers applications to enable high-throughput screening for novel anticancer compounds.

Breast Tumor Kinase (Brk/PTK6) Is a Mediator of Hypoxia-Associated Breast Cancer Progression
Tarah M. Regan Anderson, Danielle L. Peacock, Andrea R. Daniel, Gregory K. Hubbard, Kristopher A. Lofgren, Brian J. Girard, Alexandra Schorg, David Hoogewijs, Roland H. Wenger, Tiffany N. Seagroves, and Carol A. Lange

Precis: These findings define a kinase-based mechanism that drives the aggressive behavior of triple-negative breast cancers, which may offer a tractable target for therapy in this challenging disease.

ANTXR1, a Stem Cell-Enriched Functional Biomarker, Connects Collagen Signaling to Cancer Stem-like Cells and Metastasis in Breast Cancer
Daohong Chen, Poornima Bhat-Nakshatri, Chirayu Goswami, Sunil Badve, and Harikrishna Nakshatri

Precis: These findings illuminate functional links between the tumor microenvironment and stemness functions that contribute to metastatic progression, with potential implications for understanding breast cancer pathophysiology and therapy.

Comparative Expression Analysis Reveals Lineage Relationships between Human and Murine Gliomas and a Dominance of Glial Signatures during Tumor Propagation In Vitro

Precis: The brain tumor microenvironment strongly modifies tumor genetics that initiate disease, ultimately directing the pathway for growth dynamics, histology, and therapeutic responsiveness of brain tumors, with implications for understanding how to properly model and treat disease more effectively.

Correction: Quantitative In Vivo Characterization of Intracellular and Extracellular pH Profiles in Heterogeneous Tumors: A Novel Method Enabling Multiparametric pH Analysis
ABOUT THE COVER

The importance of natural killer (NK) cells for eradicating cancer cannot be overemphasized. It was found that the tumor environment impairs the development and function of NK cells and even diminishes the number of NK cells in patients with chronic myelogenous leukemia. Here, Park and colleagues show that a part of CD11bhighCD27high NK cells obtained from tumor-bearing mice were converted into CD11b+Gr1+ MDSC phenotype by GM-CSF, while the phenotype of NK cells was retained in the presence of IL-2. For details, see article by Park and colleagues on page 5669.
Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/73/18

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>