**Breaking Advances**

6097  Highlights from Recent Cancer Literature

**Reviews**

6099  RSK Isoforms in Cancer Cell Invasion and Metastasis
  Florian J. Sulzmaier and Joe W. Ramos

6106  The Evolution of Melanoma Resistance Reveals Therapeutic Opportunities
  Meghna Das Thakur and Darrin D. Stuart

**Perspectives**

6111  Formalizing an Integrative, Multidisciplinary Cancer Therapy Discovery Workflow
  Mary F. McGuire, Heiko Enderling, Dorothy L. Wallace, Jaspreet Batra, Sushil Kumar, John C. Panetta, and Eddy Pasquier

6118  Redox Imbalance and Biochemical Changes in Cancer
  Tonia C. Jorgenson, Weixiong Zhong, and Terry D. Oberley

**Meeting Report**

6124  Twenty-fifth Annual Pezcoller Symposium: Metabolism and Tumorigenesis
  William Kaelin, David Livingston, Massimo Loda, Karen Vousden, and Enrico Mihich

**Priority Report**

6128  A Comparative Genomic Approach for Identifying Synthetic Lethal Interactions in Human Cancer
  Raamesh Deshpande, Michael K. Asiedu, Mitchell Klebig, Shari Sutor, Elena Kuzmin, Justin Nelson, Jeff Piotrowski, Seung Ho Shin, Minoru Yoshida, Michael Costanzo, Charles Boone, Dennis A. Wigle, and Chad L. Myers

**Clinical Studies**

6137  Specific Recruitment of γδ Regulatory T Cells in Human Breast Cancer
  Jian Ye, Chunling Ma, Fang Wang, Eddy C. Hsu, Karoly Toth, Yi Huang, Wei Mo, Shuai Liu, Bing Han, Mark A. Varvares, Daniel F. Holl, and Guangyong Peng

**Integrated Systems and Technologies**

6149  Novel Modeling of Cancer Cell Signaling Pathways Enables Systematic Drug Repositioning for Distinct Breast Cancer Metastases
  Hong Zhao, Guangxu Jin, Kemi Cui, Ding Ren, Timothy Liu, Peikai Chen, Solomon Wong, Fuhai Li, Yubo Fan, Angel Rodriguez, Jenny Chang, and Stephen TC Wong

**Microenvironment and Immunology**

6175  Integrin αvβ3 and Fibronectin Upregulate Slug in Cancer Cells to Promote Clot Invasion and Metastasis
  Lynn M. Knowles, Lisa A. Gurski, Charlotte Engel, James R. Gnarra, Jodi K. Maranchie, and Jan Pilch

**Contents**

Cancer Research

October 15, 2013 • Volume 73 • Number 20

A Journal of the American Association for Cancer Research www.aacrjournals.org
Targeting FSTL1 Prevents Tumor Bone Metastasis and Consequent Immune Dysfunction
Chie Kudo-Saito, Takafumi Fuwa, Kouichi Murakami, and Yutaka Kawakami

Précis: These important findings offer preclinical proof-of-concept for an attractive therapeutic target to prevent or treat bone metastasis, in part through a unique mechanism that can degrade an immune escape barrier erected by tumor cells.

MOLECULAR AND CELLULAR PATHOBIOLOGY

Carboxyl-Terminal Modulator Protein Positively Regulates Akt Phosphorylation and Acts as an Oncogenic Driver in Breast Cancer

Précis: These results address some controversy in the field by corroborating the concept that an Akt-binding molecule promotes Akt phosphorylation and functions as an oncogenic molecule in breast cancer.

GPR116, an Adhesion G-Protein–Coupled Receptor, Promotes Breast Cancer Metastasis via the Gqδ-p63RhoGEF-Rho GTPase Pathway
Xiaolong Tang, Rongrong Jin, Guojun Qu, Xiu Wang, Zhenxi Li, Zengjin Yuan, Chen Zhao, Stefan Siwko, Tieliu Shi, Ping Wang, Jianru Xiao, Mingyao Liu, and Jian Luo

Précis: Identification of a G-protein coupled receptor that is crucial for the metastasis of breast cancer cells has implications for prognosis and targeting of advanced forms of human breast cancer.

Novel Oncogenic PDGFRα Mutations in Pediatric High-Grade Gliomas
Barbara S. Paugh, Xiaoyan Zhu, Chunxu Qu, Raelene Endersby, Alexander K. Diaz, Junyuan Zhang, Dorine A. Bax, Diana Carvalho, Rui M. Reis, Arza Omar-Thomas, Alberto Broniscer, Cynthia Wetmore, Jinghui Zhang, Chris Jones, David W. Ellison, and Suzanne J. Baker

Précis: These results suggest that there is a distinct spectrum of PDGF receptor alpha mutations in adult and pediatric cancers, with implications for etiology and therapy.

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

Tumor Cells Upregulate Normoxic HIF-1α in Response to Doxorubicin
Yiting Cao, Joseph M. Eble, Ejung Moon, Hong Yuan, Douglas H. Weitzel, Chelsea D. Landon, Charleen Yu-Chih Nien, Gabi Hanna, Jeremy N. Rich, James M. Provenzale, and Mark W. Dewhirst

Précis: This study suggests a means to optimize strategies for doxorubicin treatment by inhibiting the drug’s ability to upregulate HIF-1α under normoxic conditions (an unusual finding).

Erlotinib Resistance in Lung Cancer Cells Mediated by Integrin β1/Src/Akt-Driven Bypass Signaling
Rina Kanda, Akihiko Kawahara, Kosuke Watari, Yuichi Murakami, Kahori Sonoda, Masashi Maeda, Hideaki Fujita, Masayoshi Kage, Hidetaka Uramoto, Carlota Costa, Michihiko Kuwano, and Masayuki Ono

Précis: Acquired resistance to cancer cell–targeted therapies invariably poses clinical problems for resolution due to the inherent heterogeneity and plasticity of all human tumors, but combining agents that anticipate common resistance pathways may make it possible to delay relapses.

EGFR-Activating Mutations Correlate with a Fanconi Anemia–like Cellular Phenotype That Includes PARP Inhibitor Sensitivity
Heike N. Paffle, Meng Wang, Liliana Gheorghiu, Natalie Ferraiolo, Patricia Greninger, Kerstin Borngmann, Jeffrey Settleman, Cyril H. Benes, Lea V. Sequist, Lee Zou, and Henning Willers

Précis: These findings reveal mechanisms underlying cisplatin and PARP inhibitor sensitivity of EGFR-mutant lung cancer, potentially yielding therapeutic opportunities for further individualization of therapy in this subset of patients.

BRD4 Sustains Melanoma Proliferation and Represents a New Target for Epigenetic Therapy
Miguel F. Segura, Bárbara Fontanals-Cirera, Avital Gaziel-Soran, Maria V. Guijarro, Doug Hanniford, Guangtao Zhang, Pilar González-Gomez, Marta Morante, Luz Jubierre, Weiija Zhang, Farbod Darvishian, Michael Ohlmeyer, Iman Osman, Ming-Ming Zhou, and Eva Hernando

Précis: These findings strengthen a rationale for epigenetic treatment of melanomas based on pharmacologic targeting of a core transcriptional program that sustains melanoma cell identity.
Academic Article

**NSD2 Is Recruited through Its PHD Domain to Oncogenic Gene Loci to Drive Multiple Myeloma**  
Zheng Huang, Haipeng Wu, Shannon Chuai, Fiona Xu, Feng Yan, Nathan Englund, Zhaofu Wang, Hailong Zhang, Ming Fang, Youzhen Wang, Justin Gu, Man Zhang, Teddy Yang, Kehao Zhao, Yanyan Yu, Jingquan Dai, Wei Yi, Shaoqian Zhou, Qian Li, Jing Wu, Jun Liu, Xi Wu, Homan Chan, Chris Lu, Peter Atadja, En Li, Yan Wang, and Min Hu

**Histone Acetyltransferase PCAF Is Required for Hedgehog–Gli-Dependent Transcription and Cancer Cell Proliferation**  
Martina Malatesta, Cornelia Steinhauser, Faizan Mohammad, Deo P. Pandey, Massimo Squatrito, and Kristian Helin

**PLA2R1 Mediates Tumor Suppression by Activating JAK2**  
David Vinir, Arnaud Augert, Christophe A. Girard, Delphine Gittenay, Helene Lallet-Daher, Clotilde Wiel, Benjamin Le Calvé, Baptiste Gras, Mylène Ferrand, Stéphanie Verbeke, Yvan de Launoit, Xavier Leroy, Alain Puisieux, Sébastien Aubert, Michael Ferrais, Michael Gelb, Hélène Simonnet, Gérard Lambeau, and David Bernard

**Correction: Rational Drug Redesign to Overcome Drug Resistance in Cancer Therapy: Imatinib Moving Target**
The prognosis and quality of life of patients with breast cancer brain metastases is generally poor and there is no effective treatment. A generally applicable computational model integrated with systems biology experiments was developed and applied to reposition existing drugs that would inhibit brain metastases. Ten repositioned drug candidates with potential brain permeability were identified. In xenograft models, sunitinib (approved for treating advanced renal cell carcinoma and gastrointestinal stromal tumors) and dasatinib (approved for treating chronic myelogenous leukemia) were repositioned to prevent metastatic outgrowth of breast cancer cells in the brain. For details, see article by Zhao and colleagues on page 6149.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/73/20

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.