Highlights from Recent Cancer Literature

RSK Isoforms in Cancer Cell Invasion and Metastasis
Florian J. Sulzmaier and Joe W. Ramos

The Evolution of Melanoma Resistance Reveals Therapeutic Opportunities
Meghna Das Thakur and Darrin D. Stuart

Formalizing an Integrative, Multidisciplinary Cancer Therapy Discovery Workflow
Mary F. McGuire, Heiko Enderling, Dorothy I. Wallace, Jaspreet Batra, Mark A. Varvares, Daniel F. Holl, and Guangyong Peng

Redox Imbalance and Biochemical Changes in Cancer
Tonia C. Jorgenson, Weixiong Zhong, and Terry D. Oberley

Specific Recruitment of γδ Regulatory T Cells in Human Breast Cancer
Jian Ye, Chunling Ma, Fang Wang, Eddy C. Hsu, Karoly Toth, Yi Huang, Wei Mo, Shuai Liu, Bing Han, Mark A. Varvares, Daniel F. Holl, and Guangyong Peng

Precise: These findings rationalize the use of IL-10 antibodies to block migration of a class of T-regulatory cells into the breast cancer microenvironment, thereby derepressing the activity of antitumor T cells.

Novel Modeling of Cancer Cell Signaling Pathways Enables Systematic Drug Repositioning for Distinct Breast Cancer Metastases
Hong Zhao, Guangxu Jin, Kemi Cui, Ding Ren, Timothy Liu, Peikai Chen, Solomon Wong, Fuhai Li, Yubo Fan, Angel Rodriguez, Jenny Chang, and Stephen TC Wong

Precise: A generally applicable modeling method based on integrative cancer biology is used to uncover tactics for repositioning existing drugs, with the potential to immediately improve treatments for advanced cancer.

Optical Metabolic Imaging Identifies Glycolytic Levels, Subtypes, and Early-Treatment Response in Breast Cancer
Alex J. Walsh, Rebecca S. Cook, H. Charles Manning, Donna J. Hicks, Alec Lafontant, Carlos L. Arteaga, and Melissa C. Skala

Precise: Optical imaging can rapidly assess how cellular metabolism responds to molecular alterations and drug action, offering a tool to accelerate drug development.

Integrin αvβ3 and Fibronectin Upregulate Slug in Cancer Cells to Promote Clot Invasion and Metastasis
Lynn M. Knowles, Lisa A. Gurski, Charlotte Engel, James R. Gnarra, Jodi K. Maranich, and Jan Pilch

Precise: These findings establish a mechanism through which cancer cells can colonize blood clots in the lung vasculature, potentially explaining why certain tumors, such as renal carcinomas and soft tissue sarcomas, have a proclivity for lung metastasis.
Targeting FSTL1 Prevents Tumor Bone Metastasis and Consequent Immune Dysfunction
Chie Kudo-Saito, Takafumi Fuwa, Kouichi Murakami, and Yutaka Kawakami

Precis: These important findings offer preclinical proof-of-concept for an attractive therapeutic target to prevent or treat bone metastasis, in part through a unique mechanism that can degrade an immune escape barrier erected by tumor cells.

MOLECULAR AND CELLULAR PATHOBIOLOGY

Carboxyl-Terminal Modulator Protein Positively Regulates Akt Phosphorylation and Acts as an Oncogenic Driver in Breast Cancer

Precis: These results address some controversy in the field by corroborating the concept that an Akt-binding molecule promotes Akt phosphorylation and functions as an oncogenic molecule in breast cancer.

GPR116, an Adhesion G-Protein–Coupled Receptor, Promotes Breast Cancer Metastasis via the Gαq-p63RhoGEF-Rho GTPase Pathway
Xiaolong Tang, Rongrong Jin, Guojun Qu, Xiu Wang, Zhenxi Li, Zengjin Yuan, Chen Zhao, Stefan Siwko, Tieliu Shi, Ping Wang, Jiaanr Xiao, Mingyao Liu, and Jian Luo

Precis: Identification of a G-protein coupled receptor that is crucial for the metastasis of breast cancer cells has implications for prognosis and targeting of advanced forms of human breast cancer.

Novel Oncogenic PDGFRα Mutations in Pediatric High-Grade Gliomas
Barbara S. Paugh, Xiaoyan Zhu, Chunxu Qu, Raelene Endersby, Alexander K. Diaz, Junyuan Zhang, Dorine A. Bax, Diana Carvalho, Rui M. Reis, Arza Omar-Thomas, Alberto Broniscer, Cynthia Wetmore, Jinghui Zhang, Chris Jones, David W. Ellison, and Suzanne J. Baker

Precis: These results suggest that there is a distinct spectrum of PDGF receptor alpha mutations in adult and pediatric cancers, with implications for etiology and therapy.

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

Tumor Cells Upregulate Normoxic HIF-1α in Response to Doxorubicin
Yiting Cao, Joseph M. Eble, Ejung Moon, Hong Yuan, Douglas H. Weitzel, Chelsea D. Landon, Charleen Yu-Chih Nien, Gabi Hanna, Jeremy N. Rich, James M. Provenzale, and Mark W. Dewhirst

Precis: This study suggests a means to optimize strategies for doxorubicin treatment by inhibiting the drug’s ability to upregulate HIF-1α under normoxic conditions (an unusual finding).

Erlotinib Resistance in Lung Cancer Cells Mediated by Integrin β1/Src/Akt-Driven Bypass Signaling
Rina Kanda, Akihiko Kawahara, Kosuke Watari, Yuichi Murakami, Kahori Sonoda, Masashi Maeda, Hideaki Fujita, Masayoshi Kage, Hidetaka Uramoto, Carlota Costa, Michihiko Kuwano, and Mayumi Ono

Precis: Acquired resistance to cancer cell–targeted therapies invariably poses clinical problems for resolution due to the inherent heterogeneity and plasticity of all human tumors, but combining agents that anticipate common resistance pathways may make it possible to delay relapses.

EGFR-Activating Mutations Correlate with a Fanconi Anemia–like Cellular Phenotype That Includes PARP Inhibitor Sensitivity
Heike N. Pfaffle, Meng Wang, Liliana Gheorghiu, Natalie Ferraiolo, Patricia Greninger, Kerstin Borgmann, Jeffrey Settleman, Cyril H. Benes, Levia V. Sequist, Lee Zou, and Henning Willers

Precis: These findings reveal mechanisms underlying cisplatin and PARP inhibitor sensitivity of EGFR-mutant lung cancer, potentially yielding therapeutic opportunities for further individualization of therapy in this subset of patients.

BRD4 Sustains Melanoma Proliferation and Represents a New Target for Epigenetic Therapy
Miguel F. Segura, Barbara Fontanals-Cirera, Avital Gaziel-Sovran, Maria V. Guijarro, Doug Hanniford, Guangtuo Zhang, Pilar González-Gomez, Marta Morante, Luz Jubierre, WeiJia Zhang, Farbod Darvishian, Michael Ohlmeyer, Iman Osman, Ming-Ming Zhou, and Eva Hernandez

Precis: These findings strengthen a rationale for epigenetic treatment of melanomas based on pharmacologic targeting of a core transcriptional program that sustains melanoma cell identity.
TUMOR AND STEM CELL BIOLOGY

Epithelial–Mesenchymal Transition and Tumor Suppression Are Controlled by a Reciprocal Feedback Loop between ZEB1 and Grainyhead-like-2
Benjamin Cieply, Joshua Farris, James Denvir, Heide L. Ford, and Steven M. Frisch

Precis: A feedback loop between an activator of EMT and a repressor of EMT sets up a restriction point that must be breached by an overwhelming confluence of microenvironmental factors in order for a tumor cell to undergo EMT.

Targeting Sonic Hedgehog-Associated Medulloblastoma through Inhibition of Aurora and Polo-like Kinases
Shirley L. Markant, Lourdes Adriana Espanza, Jesse Sun, Kelly L. Barton, Lisa M. McCoig, Gerald A. Grant, John R. Crawford, Michael L. Levy, Paul A. Northcott, David Shih, Marc Remke, Michael D. Taylor, and Robert J. Wechsler-Reya

Precis: This study identifies a critical vulnerability in some pediatric medulloblastomas that is well suited to therapeutic attack by inhibiting pivotal G2–M phase cell-cycle kinases.

Histone Acetyltransferase PCAF Is Required for Hedgehog–Gli-Dependent Transcription and Cancer Cell Proliferation
Martina Malatesta, Cornelia Steinhauser, Faizaan Mohammad, Deo P. Pandey, Massimo Squatrito, and Kristian Helin

Precis: These results define an important cofactor for a signaling pathway commonly activated in certain brain cancers, suggesting its relevance as a candidate therapeutic target.

Integrative Radiogenomic Profiling of Squamous Cell Lung Cancer

Precis: Genomic and epigenomic predictors of cancer radiosensitivity have remained frustratingly elusive, a challenge addressed here by a more highly integrative marker study than has been advanced previously.

Activation of MAPK Pathways due to DUSP4 Loss Promotes Cancer Stem Cell-like Phenotypes in Basal-like Breast Cancer
Justin M. Balko, Luis J. Schwarz, Neil E. Bhola, Richard Kurupi, Phillip Owens, Todd W. Miller, Henry Gómez, Rebecca S. Cook, and Carlos L. Arteaga

Precis: These findings support the clinical evaluation of MEK and JNK pathway inhibitors in treatment of aggressive triple-negative breast cancers.
ABOUT THE COVER

The prognosis and quality of life of patients with breast cancer brain metastases is generally poor and there is no effective treatment. A generally applicable computational model integrated with systems biology experiments was developed and applied to reposition existing drugs that would inhibit brain metastases. Ten repositioned drug candidates with potential brain permeability were identified. In xenograft models, sunitinib (approved for treating advanced renal cell carcinoma and gastrointestinal stromal tumors) and dasatinib (approved for treating chronic myelogenous leukemia) were repositioned to prevent metastatic outgrowth of breast cancer cells in the brain. For details, see article by Zhao and colleagues on page 6149.