Contents

Breaking Advances

6377
- Highlights from Recent Cancer Literature

Reviews

6379
- Decoding the Histone Code: Role of H3K36me3 in Mismatch Repair and Implications for Cancer Susceptibility and Therapy
 - Guo-Min Li

6384
- Real-time Liquid Biopsy in Cancer Patients: Fact or Fiction?
 - Klaus Pantel and Catherine Alcx-Panabières

Meeting Report

6389
- The Hippo Tumor Suppressor Network: From Organ Size Control to Stem Cells and Cancer
 - Georg Halder and Fernando D. Camargo

Priority Report

6393
- Erythropoietin Activates Cell Survival Pathways in Breast Cancer Stem-like Cells to Protect Them from Chemotherapy
 - Matilde Todaro, Alice Turdo, Monica Bartucci, Flora Iovino, Rosanna Dattilo, Marco Biffoni, Giorgio Stassi, Giulia Federici, Ruggero De Maria, and Ann Zeuner

 Précis: A growth factor that has been used in the oncology clinic to support red blood cell counts in patients receiving chemotherapy is found to counter the therapeutic killing of cancer stem-like cells, offering a mechanistic explanation for why cancer patients receiving this growth factor have shown reduced survival.

Molecular and Cellular Pathobiology

6435
- miR-153 Supports Colorectal Cancer Progression via Pleiotropic Effects That Enhance Invasion and Chemotherapeutic Resistance

 Précis: MicroRNAs that facilitate progression and mediate drug resistance in advanced cancers have increased appeal as treatment targets, given the more frequent lack of effective therapies at late stages of disease.

Microenvironment and Immunology

6413
- GM-CSF Promotes the Immunosuppressive Activity of Glioma-Infiltrating Myeloid Cells through Interleukin-1 Receptor-α
 - Gary Kohanbash, Kayla McKaveney, Masashi Sakaki, Ryo Ueda, Arlan H. Mintz, Nduka Amankulor, Mitsugu Fujita, John R. Ohiest, and Hideho Okada

 Précis: These findings reveal the operation of immunosuppressive mechanisms in the glioblastoma microenvironment driven by GM-CSF, a factor used in the clinic to elevate white blood cell counts in patients, suggesting clinical risks arising from its use.

6424
- Substance P Autocrine Signaling Contributes to Persistent HER2 Activation That Drives Malignant Progression and Drug Resistance in Breast Cancer
 - Susana García-Recio, Gemma Fuster, Patricia Fernandez-Nogueira, Eva M. Pastor-Arroyo, So Yeon Park, Cristina Mayordomo, Elisabet Ametller, Mario Mancino, Xavier Gonzalez-Farre, Hege G. Rassnes, Pablo Engel, Domiziana Costamagna, Pedro L. Fernandez, Pedro Gascon, and Vanessa Almendro

 Précis: This work illuminates the oncogenic cooperation between HER2 and a substance P receptor involved in pain signaling, providing a novel link between cancer inflammation and progression that might be targeted by substance P antagonists being explored in the clinic.
Mutationally Activated PIK3CA-H1047R Cooperates with BRAF-V600E to Promote Lung Cancer Progression

Christy L. Trejo, Shon Green, Victoria Marsh, Eric A. Collisson, Gioia Iezza, Wayne A. Phillips, and Martin McMahon

Précis: These findings deepen the in vivo evidence that MAPK and PI3K signaling cooperates in mediating the development and progression of KRAS-mutated lung cancer, suggesting combination therapies to treat this disease.

Antitumor Efficacy of a Monoclonal Antibody That Inhibits the Activity of Cancer-Associated Carbonic Anhydrase XII

Gabor Gondi, Josef Mysliwietz, Alzbeta Hulikova, Jian Ping Jen, Pawel Swietach, Elisabeth Kremmer, and Reinhard Zeidler

Précis: This study offers a preclinical proof-of-concept for immune targeting a cell surface carbonic anhydrase that is widely expressed in human cancer as a general therapeutic strategy.

Photodynamic Therapy of Murine Mastocytoma Induces Specific Immune Responses against the Cancer/Testis Antigen P1A

Pawel Mroz, Fatma Vatansever, Angelika Muchowicz, and Michael R. Hamblin

Précis: Effective photodynamic therapy used to treat certain cancers may act as antigen-specific immunotherapy.

Bispecific Antibody to ErbB2 Overcomes Trastuzumab Resistance through Comprehensive Blockade of ErbB2 Heterodimerization

Bohua Li, Yanchun Meng, Lei Zheng, Xumin Zhang, Qing Tong, Wenlong Tan, Shi Hu, Hui Li, Yang Chen, Jinjing Song, Ge Zhang, Lei Zhao, Dapeng Zhang, Sheng Hou, Weizhu Qian, and Yajun Guo

Précis: Using a bispecific antibody to block ErbB2/HER2 heterodimerization on the surface of breast cancer cells may provide a strategy to overcome resistance to Herceptin that remains a major clinical challenge in breast cancer patients.

A Small-Molecule Blocking Ribonucleotide Reductase Holoenzyme Formation Inhibits Cancer Cell Growth and Overcomes Drug Resistance

Précis: These findings address deficiencies in existing drugs that block ribonucleotide reductase, offering preclinical validation of a promising new class of inhibitors against this valid target that could find broad use to treat many human cancers.

Correction: Breast Tumor Kinase (Brk/PTK6) Is a Mediator of Hypoxia-Associated Breast Cancer Progression

AC icon indicates Author Choice

For more information please visit www.aacrjournals.org
miR-153 leads to increased invasiveness in colorectal cancer. Using mouse tumor xenografts, it was found that colorectal tumors with inhibition of miR-153 show a clean edge of tumor spheroid and fewer invasive fronts into the surrounding stroma (magnification, ×400) in contrast to controls with a more locally invasive tumor phenotype. For details, see article by Zhang and colleagues on page 6435.
73 (21)

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/73/21

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.