REVIEWS

Decoding the Histone Code: Role of H3K36me3 in Mismatch Repair and Implications for Cancer Susceptibility and Therapy
Guo-Min Li

Real-time Liquid Biopsy in Cancer Patients: Fact or Fiction?
Klaus Pantel and Catherine Aix-Panabieres

MEETING REPORT

The Hippo Tumor Suppressor Network: From Organ Size Control to Stem Cells and Cancer
Georg Halder and Fernando D. Camargo

PRIORITY REPORT

Erythropoietin Activates Cell Survival Pathways in Breast Cancer Stem–like Cells to Protect Them from Chemotherapy
Matilde Todaro, Alice Turdo, Monica Bartucci, Flora Iovino, Rosanna Dattilo, Marco Biffoni, Giorgio Stassi, Giulia Federici, Ruggero De Maria, and Ann Zeuner

MOLECULAR AND CELLULAR PATHOBIOLOGY

miR-153 Supports Colorectal Cancer Progression via Pleiotropic Effects That Enhance Invasion and Chemotherapeutic Resistance
Lei Zhang, Karen Pickard, Veronika Jenei, Marc D. Bullock, Amanda Bruce, Richard Mitter, Gavin Kelly, Christos Paraskeva, John Stelford, John Primrose, Gareth J. Thomas, Graham Packham, and Alex H. Mirnezami

INTEGRATED SYSTEMS AND TECHNOLOGIES

A Transcriptional and Metabolic Signature of Primary Aneuploidy Is Present in Chromosomally Unstable Cancer Cells and Informs Clinical Prognosis
Jason M. Sheltzer

Precis: Chromosomal instability in cancer cells is associated with a transcriptional stress response that has prognostic significance in various types of human malignancy.
Mutationally Activated PIK3CA^{H1047R} **Cooperates with BRAF**^{V600E} **to Promote Lung Cancer Progression**

Christy L. Trejo, Shon Green, Victoria Marsh, Eric A. Collisson, Gioia Iezza, Wayne A. Phillips, and Martin McMahon

Précis: These findings deepen the in vivo evidence that MAPK and PI3K signaling cooperates in mediating the development and progression of KRAS-mutated lung cancer, suggesting combination therapies to treat this disease.

Antitumor Efficacy of a Monoclonal Antibody That Inhibits the Activity of Cancer-Associated Carbonic Anhydrase XII

Gabor Gondi, Josef Mysliwietz, Alzbeta Hulikova, Jian Ping Jen, Pawel Swietach, Elisabeth Kremmer, and Reinhard Zeidler

Précis: This study offers a preclinical proof-of-concept for immune targeting a cell surface carbonic anhydrase that is widely expressed in human cancer as a general therapeutic strategy.

Photodynamic Therapy of Murine Mastocytoma Induces Specific Immune Responses against the Cancer/Testis Antigen P1A

Pawel Mroz, Fatma Vatansever, Angelika Muchowicz, and Michael R. Hamblin

Précis: Effective photodynamic therapy used to treat certain cancers may act as antigen-specific immunotherapy.

Bispecific Antibody to ErbB2 Overcomes Trastuzumab Resistance through Comprehensive Blockade of ErbB2 Heterodimerization

Bohua Li, Yanchun Meng, Lei Zheng, Xumin Zhang, Qing Tong, Wenlong Tan, Shi Hu, Hai Li, Yang Chen, Jinqing Song, Ge Zhang, Lei Zhao, Dapeng Zhang, Sheng Hou, Weizhu Qian, and Yajun Guo

Précis: Using a bispecific antibody to block ErbB2/HER2 heterodimerization on the surface of breast cancer cells may provide a strategy to overcome resistance to Herceptin that remains a major clinical challenge in breast cancer patients.

A Small-Molecule Blocking Ribonucleotide Reductase Holoenzyme Formation Inhibits Cancer Cell Growth and Overcomes Drug Resistance

Précis: These findings address deficiencies in existing drugs that block ribonucleotide reductase, offering preclinical validation of a promising new class of inhibitors against this valid target that could find broad use to treat many human cancers.

Correction

Correction: Breast Tumor Kinase (Brk/PTK6) Is a Mediator of Hypoxia-Associated Breast Cancer Progression

AC icon indicates Author Choice
For more information please visit www.aacrjournals.org

MYC Phosphorylation at Novel Regulatory Regions Suppresses Transforming Activity

Amanda R. Wasylishen, Michelle Chan-Seng-Yue, Christina Rros, Dharmendra Dingar, William B. Tu, Manpreet Kalkat, Pak-Kei Chan, Peter J. Mullen, Ling Huang, Natalie Meyer, Brian Raught, Paul C. Boutros, and Linda Z. Penn

Précis: MYC phosphorylation mutants with super-transforming activity that were identified in this study point the way toward new therapeutic targets to attack MYC by a backdoor approach.

TIG1 Promotes the Development and Progression of Inflammatory Breast Cancer through Activation of Axl Kinase

Xiaoping Wang, Hitomi Saso, Takayuki Iwamoto, Weiya Xia, Yun Gong, Lajos Pusztai, Wendy A. Woodward, James M. Reuben, Steven L. Warner, David J. Bearss, Gabriel N. Hortobagyi, Mien-Chie Hung, and Naoto T. Ueno

Précis: These findings provide key new insights into the molecular pathobiology of the most aggressive form of breast cancer, rationalizing the Axl receptor signaling pathway as a therapeutic target for treatment of this lethal disease.

Nitric Oxide Production Upregulates Wnt/β-Catenin Signaling by Inhibiting Dickkopf-1

Qiang Du, Xinglu Zhang, Quan Liu, Xianghong Zhang, Christian E. Bartels, and David A. Geller

Précis: In addressing the complex role of nitric oxide in cancer, this study furthers evidence of an oncogenic contribution that is mediated by a mechanism that stimulates Wnt/β-catenin signaling, a central pathway for carcinogenesis.
ABOUT THE COVER

miR-153 leads to increased invasiveness in colorectal cancer. Using mouse tumor xenografts, it was found that colorectal tumors with inhibition of miR-153 show a clean edge of tumor spheroid and fewer invasive fronts into the surrounding stroma (magnification, ×400) in contrast to controls with a more locally invasive tumor phenotype. For details, see article by Zhang and colleagues on page 6435.
Cancer Research

73 (21)

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/73/21

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.