Contents

Breaking Advances

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6539</td>
<td>Highlights from Recent Cancer Literature</td>
</tr>
</tbody>
</table>

Reviews

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6541</td>
<td>Targeting microRNAs in Pancreatic Cancer: Microplayers in the Big Game</td>
</tr>
<tr>
<td>6548</td>
<td>Cancerous Inhibitor of Protein Phosphatase 2A, an Emerging Human Oncoprotein and a Potential Cancer Therapy Target</td>
</tr>
<tr>
<td>6554</td>
<td>miRNA Dysregulation in Breast Cancer</td>
</tr>
</tbody>
</table>

Integrated Systems and Technologies

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6563</td>
<td>A DNA Methylation Prognostic Signature of Glioblastoma: Identification of NPTX2-PTEN-NF-κB Nexus</td>
</tr>
</tbody>
</table>

Precis:

- **Precis:** This study of global DNA methylation in the most deadly form of brain cancer reveals a simple prognostic marker, with potential implications for treatment.

Molecular and Cellular Pathobiology

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6621</td>
<td>Genetic and Pharmacologic Inhibition of mTORC1 Promotes EMT by a TGF-β–Independent Mechanism</td>
</tr>
</tbody>
</table>

Precis:

- **Precis:** This important study raises concerns about using mTORC1 inhibitors for clinical management of cancer, given that they not only impair tumor immunity but also even promote EMT in epithelial cells, perhaps explaining the progressive pulmonary fibrosis associated with therapeutic use of mTOR inhibitors.
Hallmarks of Aromatase Inhibitor Drug Resistance Revealed by Epigenetic Profiling in Breast Cancer

Précis: Personalized breast cancer treatment might be achieved within the clinical setting by profiling DNA binding sites for transcription factors and epigenetic marks, suggesting that a similar strategy can be applied in other types of cancer.

The Transcription Factor IRF8 Counteracts BCR-ABL to Rescue Dendritic Cell Development in Chronic Myelogenous Leukemia

Tomoya Watanabe, Chie Hotta, Shin-ichi Koizumi, Kazuho Miyashita, Jun Nakabayashi, Daisuke Kurotaki, Go R. Sato, Michio Yamamoto, Masatoshi Nakazawa, Hiroyuki Fujita, Rika Sakai, Shin Fujisawa, Akira Nishiyama, Zenro Ikezawa, Michiko Aihara, Yoshiaki Ishigatsubo, and Tomohiko Tamura

Précis: These findings suggest that the transcription factor IRF8 may offer an attractive target for the development of next-generation therapies for chronic myeloid leukemia.

Intestinal GUCY2C Prevents TGF-β Secretion Coordinating Desmoplasia and Hyperproliferation in Colorectal Cancer

Ahmara V. Gibbons, Jieru E. Lin, Gilbert W. Kim, Glen F. Marsalowicz, Peng Li, Brian A. Stocker, Erik S. Blomain, Satish Rattan, Adam E. Snook, Stephanie Schulz, and Scott A. Waldman

Précis: A tumor suppressor that coordinates EMT homeostasis acts in part through paracrine circuits that oppose tumor desmoplasia and progression.

CIP2A Modulates Cell-Cycle Progression in Human Cancer Cells by Regulating the Stability and Activity of Plk1

Jae-Sung Kim, Eun Ju Kim, Jeong Su Oh, In-Chul Park, and Sang-Gu Hwang

Précis: These results establish a new function for an oncogenic inhibitor of the protein phosphatase PP2A in facilitating the stability of a critical mitotic kinase for cell cycle transit and tumorigenesis.

Loss of TBK1 Induces Epithelial–Mesenchymal Transition in the Breast Cancer Cells by ERα Downregulation

Kyung-Min Yang, YunShin Jung, Jeong-Mi Lee, WonJoo Kim, Jin Ki Cho, Joon Jeong, and Seong-Jin Kim

Précis: A new regulator of estrogen receptor-α expression in breast cancer influences EMT, with prognostic and therapeutic relevance.

Maintenance of Androgen Receptor Inactivation by S-Nitrosoylation

Yu Qin, Anindya Dey, Hansa Thayele Purayil, and Yehia Daaka

Précis: This article reveals a new regulatory mechanism for the androgen receptor in prostate cancer, with immediate prospects for sequential targeting of its different domains to extend therapeutic efficacy in patients with advanced disease.

Cytosplasmic Irradiation Results in Mitochondrial Dysfunction and DRP1-Dependent Mitochondrial Fission

Bo Zhang, Mercy M. Davidson, Hongning Zhou, Chunxin Wang, Winsome F. Walker, and Tom K. Hei

Précis: This study offers a mechanistic explanation for how ionizing radiation causes genotoxic damage, helping address long-standing gaps in knowledge concerning its extranuclear effects.

CD95L Cell Surface Cleavage Triggers a Prometastatic Signaling Pathway in Triple-Negative Breast Cancer

Marine Malleter, Sébastien Tauzin, Alban Bessede, Remy Castellano, Armelle Goubard, Florence Godey, Jean Levêque, Pascal Jézéquel, Loïc Campion, Mario Campone, Thomas Ducret, Gaëtan MacGrogan, Laure Debure, Yves Collette, Pierre Vacher, and Patrick Legembre

Précis: These findings elucidate the mechanistic basis for a metastatic function of CD95L that is connected to cell migration, opening a new direction in understanding its contributions to carcinogenesis.

CDK1 Phosphorylation of YAP Promotes Mitotic Defects and Cell Motility and Is Essential for Neoplastic Transformation

Shuping Yang, Lin Zhang, Miao Liu, Rong Chong, Shi-Jian Ding, Yuanhong Chen, and Jixin Dong

Précis: These results show how a pivotal effector of the Hippo pathway mediates its mitotic effects critical for oncogenesis.
Personalizing the Treatment of Pediatric Medulloblastoma: Polo-like Kinase 1 as a Molecular Target in High-Risk Children
Joanna Triscott, Cathy Lee, Colleen Foster, Branavan Manoranjan, Mary Rose Pambid, Rachel Berns, Abbas Fotovati, Chitra Venugopal, Katrina O’Halloran, A. Narendran, Cynthia Hawkins, Vijay Ramaswamy, Eric Bouffet, Michael D. Taylor, Ash Singhal, Julie Hukin, Rod Rassekh, Stephen Yip, Paul Northcott, Sheila K. Singh, Christopher Dunham, and Sandra E. Dunn

Crizotinib Inhibits Metabolic Inactivation of Gemcitabine in c-Met–driven Pancreatic Carcinoma
Amir Avan, Viola Caretti, Niccola Funel, Elena Galvani, Mina Maffouh, Richard J. Honeywell, Tonny Lagerweij, Olaf Van Tellingen, Daniela Campani, Dieter Fuchs, Henk M. Verheul, Gerrit-Jan Schuurhuis, Ugo Boggi, Godefridus J. Peters, Thomas Wurdinger, and Elisa Giovannetti

Chk1 Targeting Reactivates PP2A Tumor Suppressor Activity in Cancer Cells

Cetuximab Response of Lung Cancer–Derived EGF Receptor Mutants Is Associated with Asymmetric Dimerization

Taccalonolide Binding to Tubulin Imparts Microtubule Stability and Potent In Vivo Activity

Requirements for Aurora-A in Tissue Regeneration and Tumor Development in Adult Mammals
Ignacio Pérez de Castro, Cristina Aguirre-Poritz, Gonzalo Fernández-Miranda, Marta Cañamero, Dale O. Cowley, Terry Van Dyke, and Marcos Mahombre

Precis: These findings provide explanatory power for single-agent antitumor activity of a new generation of Chk1 inhibitors that mediate blockade of MYC and survival in cancer cells.
RNAi-Mediated Silencing of Myc Transcription Inhibits Stem-like Cell Maintenance and Tumorigenicity in Prostate Cancer

Précis: This important study offers a preclinical proof of concept to target Myc function in cancer stem-like cells as a general strategy to attack most if not all human cancers.

MyoD Is a Tumor Suppressor Gene in Medulloblastoma

Précis: A central muscle differentiation factor is for the first time shown to be expressed during development of the cerebellum and to function there as a tumor suppressor.

Retraction: p53 Regulates Cellular Resistance to Complement Lysis through Enhanced Expression of CD59

Retraction: Modulation of CD59 Expression by Restrictive Silencer Factor–Derived Peptides in Cancer Immunotherapy for Neuroblastoma

ABOUT THE COVER

Diaphanous-related formins create new and/or stabilize microfilament and microtubule structures that support polarized cell adhesion, migration, and division. GTP-bound Rho proteins activate these formins by direct binding. The molecular mechanism of Rho activation is through steric disruption of intramolecular interactions between Dia-inhibitory (DID) and Dia-autoregulatory (DAD) domains. Screening for compounds that block DID-DAD binding led to the discovery of intramimics, which are small molecules that interfere with autoinhibition, resulting in activation of cellular formins. Using immunofluorescence to detect detyrosinated microtubules (a trait of stabilized microtubules), this image illustrates microtubules stabilized by intramimic exposure. For details on the mechanism and pharmacologic impairment of tumor growth, see article by Lash and colleagues on page 6793.