Targeting microRNAs in Pancreatic Cancer: Microplayers in the Big Game

Sheema Khan1, Ansarullah2, Deepak Kumar3, Meena Jaggi1, and Subhash C. Chauhan1

Abstract

The prognosis of patients with pancreatic cancer is extremely poor, and current systemic therapies result in only marginal survival rates for patients. The era of targeted therapies has offered a new avenue to search for more effective therapeutic strategies. Recently, microRNAs (miRNA) that are small noncoding RNAs (18–24 nucleotides) have been associated with a number of diseases, including cancer. Disruption of miRNAs may have important implications in cancer etiology, diagnosis, and treatment. So far, focus has been on the mechanisms that are involved in translational silencing of their targets to fine tune gene expression. This review summarizes the approach for rational validation of selected candidates that might be involved in pancreatic tumorigenesis, cancer progression, and disease management. Herein, we also focus on the major issues hindering the identification of miRNAs, their linked pathways and recent advances in understanding their role as diagnostic/prognostic biomarkers, and therapeutic tools in dealing with this disease. miRNAs are expected to be robust clinical analytes, valuable for clinical research and biomarker discovery. Cancer Res; 73(22); 6541–7. ©2013 AACR.

Pancreatic Cancer and miRNA

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death in the United States (1). The recent sequencing of the pancreatic cancer genome has underscored the considerable heterogeneity of somatic DNA alterations and dysregulation of genetic pathways between individual tumors and hence challenges for molecularly targeted therapies. The progression model of PDAC is distinguished by three PDAC precursor lesions: pancreatic intraepithelial neoplasia (PanIN I, II, III), a less common precursor lesion mucinous cystic neoplasm (MCN), and intraductal papillary mucinous neoplasm (IPMN; ref. 1). PanIN, which is found in the smaller-caliber pancreatic ducts, is the most common and extensively studied lesion due to the suggested biologic relationship and common genetic alterations documented for initial increased incidence of PanINs in patients with PDAC. Key shared genetic alterations associated with PDAC progression include earliest genetic events such as mutation of K-RAS and overexpression of HER-2/neu. At later stages, inactivation of the p16 tumor suppressor gene occurs, followed by the loss of p53, SMAD4, and BRCA2 signaling pathways and the genomic-transcriptomic alterations that facilitate cell-cycle deregulation, cell survival, invasion, and metastases (1). Therefore, detecting molecular alterations at precancerous conditions together with targeting PDAC at an early stage represent an assault on the Achilles heel of cancer. Recently, miRNA therapy has emerged as a promising therapeutic strategy for various diseases. miRNAs are small non-coding RNAs consisting of 18–24 nucleotides that regulate their target mRNA stability and translation by binding imperfectly with their 3’UTR region. Apart from the role of miRNAs in cancer progression and invasion, their differential expression has been associated with patient survival and regulation of the disease response (resistance or sensitization) towards chemotherapeutic drugs.

The clinical potential of miRNAs is based on the fact that a single miRNA can regulate multiple oncogenic pathways commonly deregulated in cancer. A uniform pattern of miRNA dysregulation in PDAC is still lacking. This is due to the highly heterogeneous nature of pancreatic tissue that contains not only pancreatic ducts and acinar cells from which ductal type tumors may arise, but also the predominance of dense desmoplastic non-neoplastic stromal and infiltrating inflammatory cells. miRNAs can regulate several molecules, including mucins that harbor the complex tumor-stromal microenvironment and contribute to tumor progression and chemoresistance. Thus, the rapid and coordinated manipulation of protein levels across multiple pathways endows these regulatory RNAs with the ability to instantly switch between cellular programs. Also, the identification of miRNAs during transition from PanIN I, PanIN II, and PanIN III to adenocarcinoma and the specific roles they exert in such a process is warranted to properly design strategies to prevent and/or attenuate the
malignant phenotype. Thus far, very few studies have investigated miRNA changes associated with PDAC progression. This review summarizes the strategies to tackle pancreatic cancer at genetic level through the miRNAs.

Rationale for Developing miRNA-Based Therapy

Considerable research shows that restoring the expression of tumor suppressor miRNAs seeks to reinstate those cellular programs that are active in normal cells and interfere with oncogenic programs necessary for a malignant phenotype. However, antagonizing the function of overexpressed oncogenic miRNAs inhibits multiple oncogenic pathways. It has been successfully shown that intravenous injection of antagonomers, 2′-O- methyl-antisense oligonucleotides conjugated with a cholesterol moiety at the 3′-end, leads to long-lasting inhibition of specific miRNAs in mice (2). In contrast, restoration of expression of downregulated tumor-suppressive miRNAs is usually achieved using adeno- and lentiviral vectors, non-viral lipid-based strategies that have recently been developed for systemic miRNA delivery and applied successfully to lung and prostate cancer xenograft models (3). Miraviren (LNA oligomer targeting miR-122), after showing positive effects against HCV infection in chimpanzees (4), showed prolonged dose-dependent reductions in HCV RNA levels without evidence of viral resistance in patients with chronic HCV genotype 1 infection (5). Standard computational analysis is used in a combined genome-wide association study, miRNA profiling for the identification of response predictors in patients with metastatic breast cancer (NCT01598285, ClinicalTrials.gov). The success of the preclinical trial of MRX34 (proprietary tumor suppressor miRNA, miR-34) in an orthotopic mouse model of hepatocellular carcinoma through the SMARTICLES oligonucleotide delivery technology has prompted the start of its phase I clinical trials (Mirna Therapeutics, Inc) recently, in May 2013 (http://www.clinicaltrials.gov/ct2/show/NCT01829971?term¼trials.gov/ct2/show/NCT01829971?term=mirna). miR-34-based therapy and the MRX34 is the first miRNA mimic to advance into a human clinical trial. Similar approaches can be used to target the highly fibrotic pancreatic tumors. Overall, these strategies, besides being powerful approaches for functional validation of miRNAs relevant for a specific disease, constitute a prerequisite for the development of potential miRNA-based therapies.

Herein, we discuss several important miRNAs, which have consistently been shown to be involved in PDAC progression by many research groups. Also, we discuss strategies of miRNA modulator delivery in cancer models, a subject that remains the key challenge to the establishment of miRNA therapeutics.

miRNAs in Pancreatic Cancers. Where Are We Now?

The functional activity of only a handful of miRNAs has been experimentally modeled in the context of pancreatic cancer. Some of these miRNAs have been characterized as potent oncogenes (oncomiR) or tumor suppressors (tsmiR), based on the consequences of their expression on the phenotype in experimental models.

Oncogenic microRNAs

miRNA profiling and functional studies reveal several deregulated miRNAs in PDAC progression, but very few studies have shown their role in the key shared genetic alterations associated with their precursor lesions. The most specifically overexpressed miRNA in PanIN III lesions (carcinoma in situ) identified is miRNA-196b (6). Aberrant expression of several miRNAs has been identified early in PanIN lesions as well as throughout the multistep progression of PDAC. They include miR-21, miR-155, and miR-221 (7), which have been linked to fibrogenesis through TGF-β that promotes their expression. They play an important role in functioning as proto-oncogenes and have been associated with decreased survival in patients with PDAC (8). miR-155 targets a key tumor suppressor, TP53INP1 (9), which is expressed in normal tissues in early stages of pancreatic cancer development. miR-21 decreases the expression of SMAD7, a negative regulator of TGF-β signaling (10). On the other hand, several studies have reported significant overexpression of miR-21 in PDAC associated with chemoresistance (11). Thus, inhibition of miR-21 in PDAC would be potentially useful to inhibit the desmoplastic reactions via repression of TGF-β signaling in PDAC (12) to overcome drug resistance and inhibit tumor surveillance.

Immunosuppressive tumor microenvironments can restrain antitumor immunity, particularly in PDAC. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. miR-224 and miR-486 are upregulated and target CD40, thus downregulating its protein expression at cell surfaces in highly invasive and metastatic PDAC (13). The oncogenic role of selected miRNAs has mainly been associated with their ability to enhance the proliferative potential of cancer cells through the suppression of cell-cycle-related protein pRb (14), as well as members of the E2F family of transcription factors. For instance, miR-132 and miR-212 are upregulated in PDAC tissues and these miRNAs promote tumorogenesis by reducing pRb, thus increasing expression of E2F gene products (14).

A critical tumor suppressor, DPC4/Smad4, is involved in the progression of PDAC and is targeted by miR-27a (15). Attenuation of miR-27a in PDAC cells reduced growth, colony formation, migration, and also downregulated sprouty2 (spry2), a negative feedback regulator of multiple receptor tyrosine kinases exerting an oncogenic effect. MicroRNA-10 a/b are overexpressed in PDAC, promote its invasiveness, and correlate with a poor prognosis (16–18). HOX genes have been identified as their potential targets in many cancers, including PDAC (19).

An association between aberrant miRNA expression and malignancy in PDAC was recently shown with an oncogenic positive feedback loop. miR-301a inhibits proapoptotic Bim expression (20) and suppresses NF-kB repressing factor (Nkrf) in PDAC, leading to NF-kB activation, which in turn activates the transcription of miR-301a. Inhibition of miR-301 or overexpression of Nkrf reverses the process and slows down tumor growth, suggesting that miR-301a contributes to oncogenesis by activating NF-kB (21). In addition, increased expression of miR-155, miR-21, miR-203, miR-210, and miR-222 has reportedly been associated with poor survival in patients.
with cancer (8). Moreover, high expression of miR-196a-2 is associated with patients' poor outcome (22), which suggests it may be a prognostic marker for PDAC. In addition, applying silencing strategies to these miRNAs may likely alter the outcome of conventional therapeutics and overall survival of patients with pancreatic cancer.

Tumor suppressor microRNAs

Recently, the miR-200 a/b/c family has been observed to suppress stemness of cancer cells by suppressing stem cell factors such as Sox2 and inhibiting SIP 1 and ZEB1 (negative regulator of E-cadherin), thereby inhibiting EMT and invasion in pancreatic cancer cells (23). But the miR-200 family (over-expressed in PanINs/miR-200c only in low grade PanINs), including Let-7, miR-194, and miR429, are found to be significantly overexpressed with epigenetic alterations in highly invasive and metastatic PDAC targeting the tumor and metastasis suppressor, EP300 mRNA, and protein (24). Thus, the epigenetic modification responsible for abnormal expression of miRNAs in pancreatic tumors may be a crucial mechanism contributing to cancer invasion and metastasis. Differential expression of certain miRNAs detected in PanINs correlates with their expression in invasive PDAC.

A well-documented tumor suppressor in PDAC is miR-375, which targets 14-3-3 zeta (15, 22) and induces caspase-dependent apoptosis. Its overexpression downregulates the PDK1/Akt survival pathway and leads to downregulation of potential biomarkers such as IGFBP5 and CAV-1 (25). Very recently, diverse tumor-suppressive functions have been associated with miR-15a, which modulates the survival pathways by targeting WNT3A (Wnt/b-catenin pathway) and FGFR7 (26). Ectopic expression of miR-96 increases cell apoptosis reduces migration, proliferation, and invasion of PDAC cell lines by inhibition of the KRAS/Akt (27). In addition, the downregulation of miR-34a is seen along with the loss of p53 function (28), implicating its role in PDAC.

Therapeutic Implications of miRNAs, a Way toward the Clinic

The therapeutic application of miRNAs involves two strategies. One strategy is directed against a gain-of-function and aims to inhibit oncogenic miRNAs by using miRNA antagonists. The second strategy against a loss-of-function, miRNA replacement, involves the reintroduction of a tumor suppressor miRNA to restore a loss of function.

miRNA Gain-of-Function

It is our understanding that miR-21, miR-155, miR-196a, miR-210, and miR-221 (Table 1) are overexpressed in PDAC and

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Status</th>
<th>Role</th>
<th>Targets</th>
<th>Significance</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-21</td>
<td>O</td>
<td></td>
<td>EGFR, HER2/neu, PDCD4, Bcl2, PTEN, TIMP2, TIMP3</td>
<td>Postresection short DFS/worse OS</td>
<td>(11, 30, 31, 45)</td>
</tr>
<tr>
<td>miR-155</td>
<td>O</td>
<td></td>
<td>TP53NIP1</td>
<td>Postresection poor OS and prognosis</td>
<td>(8, 9)</td>
</tr>
<tr>
<td>miR-196a-2, miR-196b</td>
<td>O</td>
<td></td>
<td>HOXB8, ANXA1, HMGA2</td>
<td>Postresection</td>
<td>(22, 46–48)</td>
</tr>
<tr>
<td>miR-222/221</td>
<td>O</td>
<td></td>
<td>CDKN1B (p27), PUMA, PTEN, Bim</td>
<td>Postresection poor OS and prognosis</td>
<td>(8, 22, 45)</td>
</tr>
<tr>
<td>miR-210</td>
<td>O</td>
<td></td>
<td>HOXA1, FGFRL1, HOXA9, COX10, E2F3, RAD52, ACVR1B, MNT</td>
<td>Postresection poor OS</td>
<td>(8, 22, 45)</td>
</tr>
<tr>
<td>miR 10a/b</td>
<td>O</td>
<td></td>
<td>HOXB8, HOXA1</td>
<td>Poor OS; Gem chemo-resistance</td>
<td>(16–19)</td>
</tr>
<tr>
<td>miR-375</td>
<td>O</td>
<td></td>
<td>PDK1, 14-3-3zeta</td>
<td>Biomarker (Dtc: plasma, feces)</td>
<td>(22, 25, 49)</td>
</tr>
<tr>
<td>miR-301a</td>
<td>O</td>
<td></td>
<td>Bim, NKR</td>
<td>Proliferation and metastasis</td>
<td>(20, 21)</td>
</tr>
<tr>
<td>miR-200a/b/c</td>
<td>TS</td>
<td></td>
<td>EP300</td>
<td>Postresection high expression improved OS</td>
<td>(22, 24, 40, 50)</td>
</tr>
<tr>
<td>miR-34a</td>
<td>TS</td>
<td></td>
<td>Bcl-2</td>
<td>Improved OS after treatment, marker for Gem chemo-sensitivity</td>
<td>(38)</td>
</tr>
<tr>
<td>Let-7</td>
<td>TS</td>
<td></td>
<td>E2F2, c-Myc, KRAS, MAPK</td>
<td>Enhances chemo-sensitivity</td>
<td>(40)</td>
</tr>
<tr>
<td>miR-34b</td>
<td>TS</td>
<td></td>
<td>Smad3</td>
<td>Reduces invasion/metastasis</td>
<td>(51)</td>
</tr>
<tr>
<td>miR-96</td>
<td>TS</td>
<td></td>
<td>KRAS, AKT</td>
<td>Inhibits tumor growth and invasion</td>
<td>(27)</td>
</tr>
</tbody>
</table>

Abbreviations: DFS, disease-free survival; Dtc, detection; Gem, gemcitabine; OS, overall survival.
currently represent the most promising candidates as onco-
genic miRNAs.

Antisense oligonucleotides

It has been shown that antisense oligonucleotides (ASO) can inhibit upregulated oncogenic miRNAs in tumors in a specific, efficient, and long-lasting manner (29). ASOs for miR-21 and miR-221 increase the levels of their targets (PTEN, RECK, and CDKN1B), reduce proliferation, and increase apoptosis of pancreatic cancer cells (30, 31). ASOs also sensitize PDAC cells to gemcitabine and generate synergistic antitumor effects. Preclinical studies have shown potent activity of AEG35156 (targets X-linked inhibitor of apoptosis mRNA) in combination with gemcitabine in PDAC (32). These results imply that targeting miRNAs with ASOs could be a potential new therapeutic strategy for PDAC.

AntagomiRs

The miRNA antagonists carry chemical modification that degrades and traps the endogenous miRNA in a configuration that is unable to be processed by RISC. A locked nucleic acid (LNA) is an ASO modified by LNA technology [bicyclic high-affinity RNA mimicking N-type (C3'-endo) conformation by the introduction of a 2'-O-4'-methylene bridge]. An anti-miRNA oligonucleotide (AMO) is a single-stranded ASO, chemically modified (usually with a 2'-O-methyl group) 17 to 22 nucleotide long nucleic acid molecule. A study showed that an antagonim against miR-21 sensitized cultured cells to 5-fluorouracil (5-FU) treatment, suggesting this miRNA ther-

Agents targeting epigenetic alterations

Studies have shown that subsets of miRNAs are also modulated by aberrations in epigenetic regulation. Studies show ganciclovir (a potent inhibitor of histone acetyltrans-
fases) synergizes with gemcitabine to modulate specific miRNA biomarkers (miR-21, miR-196a, miR-495, miR-605, miR-638, and miR-453) that sensitize PDAC cells to gemcitabine treatment, thus attenuating the drug-resistance phenotype (35). Another study shows that trichostatin A, a histone deacetylase inhibitor, induces downregulation of oncogenic miR-21 and upregulation of tumor suppressor miR-200c in pancreatic cancer cells, resulting in cell-cycle arrest and increased apoptosis (36). Therefore, epigenetic regulation of miRNAs with a histone deacetylase inhibitor may be an effective therapeutic option for pancreatic cancer.

miRNA Loss-of-Function

In our opinion, the miRNAs, Let-7, miR-34a, miR-96, miR-375, miR-200 family (Table 1) currently represent the most promising candidates as tumor-suppressive miRNAs.

miRNA replacement therapy

Efficient reconstitution of miRs through *in vivo* delivery of miRNA precursors is a crucial factor for the development of successful miRNA-based treatment modalities, a practical application of which is still pending. Restoration of lost Let-7 expression in gemcitabine-resistant PDAC cells inhibits prolifera-
tion, restores epithelial phenotype, and renders the tumor cell sensitive to gemcitabine. Also, ectopic expression of members of the Let-7 family of miRNAs in cancer cells increased their *in vitro* radiation response (37), on the basis of this evidence, rational design of combined therapeutic approaches comprising anticancer agents and specific miRNA modulators can be envisaged to improve therapeutic response. Functional studies carried out in PDAC models attribute an oncosuppressive function to miR-34, because it is a key regu-

Small-molecule drugs targeting specific miRNAs

From the perspective of their secondary structures, miRNAs appear to be ‘druggable’ targets. The formation of stem loops found in pre-miRNAs and the bulges in miRNAs facilitate small-molecule targeting, thereby, making the development of small-molecule drugs (SMIR) a promising prospect. SMIRs interact and bind to the grooves and pockets on the surfaces of miRNAs directly, thereby interfering with the biologic func-
tions of targeted miRNAs and inhibiting the processing of miRNAs (39). A number of agents, including isoflavone and 3,3-diindolylmethane, has been shown to alter expression of miR-

Nanovector therapy

Non-viral lipid-based complexes, liposomes, and nanoparticles have been promising avenues used for systemic miRNA delivery. Studies show that systemic nanovector therapy...
modulates direct and indirect miRNA targets in a pancreatic cancer xenograft mouse model (42). In our opinion, this is an effective delivery system, displaying carrier-defined specificity to deliver miRNA or miRNA-modulating agents to relevant tissues or organs. The SMARTICLES oligonucleotide delivery technology is currently being used to deliver MRX01 (proprietary tumor suppressor miRNA, miR-34) in a hepatocellular carcinoma orthotopic mouse model. Preclinical trials are projected to begin this year (Mirna Therapeutics, Inc).

Correlation of miRNAs in Clinicopathologic Parameters

miRNAs have potential as diagnostic and prognostic biomarkers and as therapeutic targets in cancer. Poor survival of patients with pancreatic cancer, especially with PDAC, is attributed to diagnosis at an advanced stage. Therefore, the development of minimally invasive early detection biomarkers for effective clinical management is urgently needed. A company named Asuragen has developed a molecular diagnostic test to distinguish between benign and PDAC that can be performed on fine-needle aspirate (FNA) biopsies of lesions. This is used in conjunction with indeterminate and benign FNA cytology and is based on the expression levels of the seven miRNAs and their scores.

The detection of biomarkers in bodily fluids (blood, sera, plasma, and feces) offers the possibility of detecting disease at an early stage (43, 44). However, the diagnostic and prognostic value of circulating miRNAs in PDAC has not yet been abundantly proven. The discovery of serum miRNAs as potential biomarkers overcomes the problem of collecting tissue samples by an invasive process. In our opinion, the combination of multiple serum miRNAs can serve as a more comprehensive indicator for tumor detection than the conventional single protein–based or single carbohydrate molecule–based biomarkers, such as CA19-9 and CEA. A comparison of the miRNA expression patterns in serum and tissue/cells may provide additional evidence supporting the use of circulating miRNAs as reliable diagnostic biomarkers (43). However, past studies have not provided direct evidence that serum miRNAs are actively secreted or passively leaked from tumor cells. Therefore, more research in this area will provide a proof-of-principle approach for the use of miRNAs as a diagnostic tool for early pancreatic cancer detection.

Future Perspectives

The contribution of miRNAs to the biology of PDAC is still at an early stage even though evidence of deregulated expression suggests miRNAs possess crucial roles in disease development/progression. Collectively, given the myriad of diagnostic, prognostic, and therapeutic opportunities arising from miRNA modulation, the translation of miRNA-targeted therapeutics into the clinic will probably witness rapid progress. However, it remains unclear whether the identification of miRNA associated with the transition of an early PanIN and other premalignant lesions into PDAC prevents and/or modulates the malignant phenotype. Focus is required on the critical shifts of these miRNAs in the behavior of these lesions and how they relate to underlying molecular alterations, checkpoint responses, genomic complexity, and the activation of key signaling cascades. Pathobiologic and clinical information, along with the development of uniform standards for miRNA measurement to facilitate comparison across studies, could potentially explain the whole story. Moreover, the role of miRNAs in various genetic networks and regulatory pathways, including the mesenchyme and stroma, needs to be analyzed in larger cohort neoplastic and normal tissues. This will be important for the identification and validation of specific miRNAs as diagnostic/prognostic markers. In addition, studies regarding the mechanisms of widespread miRNA dysregulation are clearly needed to understand the origin of the highly metastatic properties of PDAC and provide insight for the improvement of the prognosis of this fatal disease. From a therapeutic standpoint, more details regarding the role of miRNAs in the maintenance of normal cellular homeostasis as well as development of transformed phenotypes would stimulate rational therapeutic benefits. For this purpose, the development of proper in vivo experimental models is important to recapitulate in vivo miRNA functions. In addition, getting a small RNA to interfere with the specific miRNA in the target tissue at a safe and therapeutic level by systemic administration remains a great challenge. Hence, adequate assessment of the functional effects after miRNA inhibition and the long-term miRNA antagonism in in vivo are of key importance for anti-miR–based functions. Owing to the severity and limited treatment paradigms in cancer the higher tolerance provided by regulatory authorities for novel anticancer agents would overcome the time frame barrier for miRNA therapeutics to reach clinic.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: S. Khan, M. Jaggi, S.C. Chauhan
Development of methodology: S. Khan, M. Jaggi
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S. Khan, D. Kumar, M. Jaggi
Writing, review, and/or revision of the manuscript: S. Khan, A. Ansarullah, D. Kumar, M. Jaggi, S.C. Chauhan
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): S. Khan, M. Jaggi
Study supervision: M. Jaggi, S.C. Chauhan

Acknowledgments

The authors thank Cathy Christopherson for editorial assistance.

Grant Support

This work was partially supported by grants to S.C. Chauhan from Governor’s Cancer 2010, the NIH Research Project Grant Program (RO1)(CA127576), LO1 (CA162106A), P20GM103548, and the Centers of Biomedical Research Excellence (P20 RR024219).

Received May 2, 2013, revised August 15, 2013; accepted August 16, 2013; published OnlineFirst November 7, 2013.
References

Targeting microRNAs in Pancreatic Cancer: Microplayers in the Big Game

Sheema Khan, Ansarullah, Deepak Kumar, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-13-1288

Cited articles
This article cites 50 articles, 14 of which you can access for free at:
http://cancerres.aacrjournals.org/content/73/22/6541.full#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/73/22/6541.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/73/22/6541.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.