Highlight from Recent Cancer Literature

Tumor–Stroma Interaction: Revealing Fibroblast-Secreted Exosomes as Potent Regulators of Wnt-Planar Cell Polarity Signaling in Cancer Metastasis
Valbona Luga and Jeffrey L. Wrana

The Role of Polo-like Kinase 1 in Carcinogenesis: Cause or Consequence?
Brian D. Cholewa, Xiaosiqi Liu, and Nihal Ahmad

D538G Mutation in Estrogen Receptor-a: A Novel Mechanism for Acquired Endocrine Resistance in Breast Cancer
Keren Merenbakh-Lamin, Noa Ben-Baruch, Adva Yeheskel, Addie Dvir, Laurie Soussan-Gutman, Rinat Jeselsohn, Roman Yelensky, Myles Brown, Vincent A. Miller, David Sarid, Shalumith Rizel, Baruch Klein, Tami Rubinek, and Ido Wolf

Free Somatostatin Receptor Fraction Predicts the Antiproliferative Effect of Octreotide in a Neuroendocrine Tumor Model: Implications for Dose Optimization
Pedram Heidari, Eric Wehrenberg-Klee, Peiman Habibollahi, Daniel Yokell, Matthew Kulke, and Umar Mahmood

Senescent Fibroblasts in Melanoma Initiation and Progression: An Integrated Theoretical, Experimental, and Clinical Approach
Eunjung Kim, Vito Rebecchi, Inna V. Fedorenko, Jane L. Messina, Rahel Mathew, Silvya S. Marta-Engler, David Basanta, Keiran S.M. Smalley, and Alexander R.A. Anderson

Précis: These findings developed by in silico modeling reinforce an alternative perspective on cancer, in which senescent fibroblasts create the core conditions required to license the ability of cancer cell mutations to promote malignancy, reinforcing a greater therapeutic focus on the tumor microenvironment as a cause of cancer.

A Novel Model of Dormancy for Bone Metastatic Breast Cancer Cells
Rebecca Marlow, Gabriella Honeth, Sara Lombardi, Massimiliano Cariati, Sonya Hessey, Alkaterini Pipili, Veronica Mariotti, Bharath Buchupalli, Katie Foster, Dominique Bonnet, Agamemnon Grigoriadis, Pranela Rameshwar, Anand Purushotham, Andrew Tutt, and Gabriela Dontu

Précis: This study presents novel experimental systems for investigating cancer cell dormancy, a phenomenon of high clinical relevance that is largely under-investigated due to lack of appropriate models.

Therapeutic PD-1 Pathway Blockade Augments with Other Modalities of Immunotherapy T-Cell Function to Prevent Immune Decline in Ovarian Cancer
Jaikumar Duraiswamy, Gordon J. Freeman, and George Coukos

Précis: Immune escape, a core hallmark of advanced cancer, can be reversed by strategies that block a central pathway of T-cell exhaustion activated in the microenvironment of many solid tumors.
6913 Low PIP4K2B Expression in Human Breast Tumors Correlates with Reduced Patient Survival: A Role for PIP4K2B in the Regulation of E-Cadherin Expression

Willem-Jan Keune, Andrew H. Sims, David R. Jones, Yvette Bulsma, James T. Lynch, Karin Jirström, Goran Landberg, and Nullin Divecha

Pécis: An enzyme that regulates second messengers in lipid signaling impacts the survival of breast cancer patients by modifying a pivotal tumor suppressor function.

6926 Skin Tumorigenesis Stimulated by Raf Inhibitors Relies Upon Raf Functions That Are Dependent and Independent of ERK

Eszter Doma, Christian Rupp, Andrea Varga, Florian Kern, Bettina Riegler, and Manuela Baccarini

Pécis: Provocative preclinical results suggest that B-Raf inhibitors being used currently in the clinic to treat melanoma may not only trigger development of cutaneous skin tumors, a known side effect, but also gastric tumors, which are far less manageable.

6938 TRAF4 Is a Critical Molecule for Akt Activation in Lung Cancer

Wei Li, Cong Peng, Mee-Hyun Lee, DoYoung Lim, Feng Zhu, Yang Fu, Ge Yang, Yuqiao Sheng, Lanbo Xiao, Xin Dong, WeiYa Ma, Ann M. Bode, Ya Cao, and Zigang Dong

Pécis: These findings reveal a pivotal role for a ubiquitylation enzyme in Akt control and lung cancer pathophysiology, suggesting its role as a candidate molecular target for lung cancer prevention and therapy.

6951 SHON Is a Novel Estrogen-Regulated Oncogene in Mammary Carcinoma That Predicts Patient Response to Endocrine Therapy

Yewon Jung, Tarek M.A. Abdel-Fatah, Stephen Y.T. Chan, Christopher C. Nolan, Andrew R. Green, Ian O. Ellis, Lili Li, Baiqu Huang, Jun Lu, Bing Xu, Longxin Chen, Runlin Z. Ma, Min Zhang, Jingru Wang, ZhengSheng Wu, Tao Zhu, Jo K. Perry, Peter E. Lobie, and Dong-Xu Liu

Pécis: These findings identify a human oncogene that may serve as a simple biomarker to predict the therapeutic efficacy of antioestrogen therapy in ER+ breast tumors.

6963 Androgen Glucuronidation: An Unexpected Target for Androgen Deprivation Therapy, with Prognosis and Diagnostic Implications

Laurent Grosse, Sophie Piqué, Patrick Caron, Ladan Fazli, Paul S. Rennie, Alain Bélanger, and Olivier Barbier

Pécis: These findings reveal a local pathway of androgen metabolism in prostate cells that can antagonize the effects of androgen deprivation therapy in prostate cancer.

6972 miRNA-95 Mediates Radioresistance in Tumors by Targeting the Sphingolipid Phosphatase SGPP1

Xiaoyong Huang, Samira Taeh, Sahar Jahangiri, Urban Emmeneger, Elisa Tran, Jeff Bruce, Aruz Mesci, Elina Korpela, Danny Vesperini, C. Shun Wong, Robert G. Bristow, Fei-Fei Liu, and Stanley K. Liu

Pécis: This seminal report identifies a little-studied microRNA as a major mediator of radiation resistance in tumors, also showing how resistance can be reversed with a clinically approved inhibitor of sphingosine-1-phosphate signaling.

6987 Supramolecular Nanoparticles That Target Phosphoinositide-3-Kinase Overcome Insulin Resistance and Exert Pronounced Antitumor Efficacy

Pécis: This study provides a preclinical foundation for the use of supramolecular nanochemistry to overcome current challenges associated with PI3K inhibitors and also offers a more general paradigm for the development of molecular targeted therapeutics for cancer treatment.

6998 Contribution of Bcl-2 Phosphorylation to Bak Binding and Drug Resistance

Haiming Dai, Husheng Ding, X. Wei Meng, Sun-Hee Lee, Paula A. Schneider, and Scott H. Kaufmann

Pécis: These findings offer a mechanistic basis to understand the enhanced antiapoptotic activity of phosphorylated Bcl-2, along with the ability of BH3 mimetics to enhance cancer cell sensitivity to taxanes.
Carbon Monoxide Expedites Metabolic Exhaustion to Inhibit Tumor Growth
Barbara Wegiel, David Gallo, Eva Csizmadia, Clair Harris, John Belcher, Gregory M. Vercellotti, Nuno Penacho, Pier Paolo Pandolfi, Leszek Helczynski, Anders Bjartell, Jenny Liao Persson, and Leo E. Otterbein

Precise: Clinical trials of carbon monoxide that are being conducted as a strategy for chemosensitization may benefit from mechanistic insights into CO-induced cancer cell death provided in this study.

The HSP90 Inhibitor Ganetespib Synergizes with the MET Kinase Inhibitor Crizotinib in both Crizotinib-Sensitive and -Resistant MET-Driven Tumor Models
Naoto Miyajima, Shinji Tsutsumi, Carole Sourbier, Kristin Beebe, Mehdi Mollapour, Candy Rivas, Soichiro Yoshida, Jane B. Trepel, Ying Huang, Manabu Tatokoro, Nobuo Shinohara, Katsuya Nonomura, and Len Neckers

Precise: Hsp90 inhibition synergizes with MET tyrosine kinase inhibition and restores sensitivity to drug-resistant MET mutants.

PTEN Loss Mitigates the Response of Medulloblastoma to Hedgehog Pathway Inhibition

Precise: This study offers new insights into the potential efficacy of Hedgehog pathway inhibitors being tested clinically against a common pediatric cancer.

Antitumor Activity of the Selective Pan-RAF Inhibitor TAK-632 in BRAF Inhibitor-Resistant Melanoma
Akito Nakamura, Takeo Arita, Shuntarou Tsuchiya, Jill Donelan, Jouharu Chourit, Elizabeth Caride, Katherine Galvin, Masanori Okaniwa, Tomoyasu Ishikawa, and Sei Yoshida

Precise: This pan-RAF inhibitor may offer needed therapeutic options for patients with NRAS- or BRAF-driven melanomas that are refractory to BRAF inhibitor treatment.
In Vivo MAPK Reporting Reveals the Heterogeneity in Tumoral Selection of Resistance to RAF Inhibitors
Kevin J. Basile, Ethan V. Abel, Neda Dadpey, Edward J. Hartsough, Paolo Fortina, and Andrew E. Aplin

Précis: This article describes a novel in vivo system for noninvasive evaluation of a kinase-mediated mechanism of acquired resistance to BRAF-targeting drugs, an area of present clinical challenge for treating metastatic melanoma.

Neuropilin-2 Is Upregulated in Lung Cancer Cells during TGF-β1–Induced Epithelial–Mesenchymal Transition
Patrick Nasarre, Robert M. Gemmill, Vincent A. Potiron, Joëlle Roche, Xian Lu, Anna E. Barón, Christopher Korch, Elizabeth Garrett-Mayer, Alessandro Lagana, Philip H. Howe, and Harry A. Drabkin

Précis: These findings provide insights into how TGF-β1 mediates invasion and tumorigenesis and identify a novel therapeutic target that may prevent or reverse EMT associated with metastatic progression.

BCCIP Suppresses Tumor Initiation but Is Required for Tumor Progression
Yi-Yuan Huang, Li Dai, Dakim Gaines, Roberto Draz-Rosario, Huimei Lu, Jingmei Liu, and Zhiyuan Shen

Précis: This study describes a paradoxical tumor suppressor that can also promote cancer progression, serving as a prototype for a class of suppressors that does not need to be permanently inactivated to trigger tumorigenesis.

LETTERS TO THE EDITOR

Benefits of Vascular Normalization Are Dose and Time Dependent—Letter
Yuhui Huang, Triantafyllos Stylianopoulos, Dan G. Duda, Dai Fukumura, and Rakesh K. Jain

Bevacizumab-Induced Vessel Normalization Hampers Tumor Uptake of Antibodies—Response
Marlous Arjaans, Sjoukje F. Oosting, Carolina P. Schroder, and Elisabeth G.E. de Vries

ABOUT THE COVER

Carbon monoxide (CO) at therapeutic concentrations induces growth arrest of lung and prostate cancer cell lines and tumors. CO is generated endogenously as a bioactive signaling molecule by the cytoprotective gene heme oxygenase-1 (HO-1). In cancer cells, HO-1 activity, and thus endogenous CO levels, is decreased and can be rescued by delivery of exogenous CO. Astonishingly, CO sensitizes cancer cells to chemotherapeutic agents while simultaneously protecting normal cells from genotoxin-induced cell death. The mechanism of CO involves its propensity to bind to heme-containing oxidases in mitochondria. Shown here are prostate cancer cells (PC3) exposed to CO in the presence of the genotoxin doxorubicin, which resulted in a dramatic shift in mitochondrial membrane potential and metabolic collapse driven by an anti-Warburg effect. Using MitoTracker Red CMXRs staining (red), which fluoresces when a cell is actively respiring, Wegiel and colleagues observed that CO decreased respiration and mitochondrial membrane potential, indicative of mitochondrial failure. Nuclei were stained with Hoechst (blue). For details, see article by Wegiel and colleagues on page 7009.
Cancer Research

73 (23)

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/73/23

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.