BREAKING ADVANCES
7149 Highlights from Recent Cancer Literature

POINT-COUNTERPOINT REVIEWS
7151 It Is Not Always Necessary to Do Axillary Dissection for T1 and T2 Breast Cancer—Point
Monica Morrow
See Counterpoint and Reply by Sabel, p. 7156
7155 It Is Not Always Necessary to Do Axillary Dissection for T1 and T2 Breast Cancer—Reply to Point
Michael S. Sabel
See Point by Morrow, p. 7151
7156 The Need for Axillary Lymph Node Dissection in T1/T2 Breast Cancer Surgery—Counterpoint
Michael S. Sabel
See Point and Reply by Morrow, p. 7151 and p. 7161
7161 The Need for Axillary Lymph Node Dissection in T1/T2 Breast Cancer Surgery—Reply to Counterpoint
Monica Morrow
See Counterpoint by Sabel, p. 7156

INTEGRATED SYSTEMS AND TECHNOLOGIES
7168 The Role of Cell Density and Intratumoral Heterogeneity in Multidrug Resistance
Orit Lavi, James M. Greene, Doron Levy, and Michael M. Gottlesman
Précis: The new model suggested in this report might improve the design of treatment protocols and the analysis of patient responses to therapy.
7176 A Circadian Clock Transcription Model for the Personalization of Cancer Chronotherapy
Précis: A better understanding of a regulatory transcription loop that controls the molecular clock functions of normal cells might critically improve the tolerability of chemotherapy in patients.

MICROENVIRONMENT AND IMMUNOLOGY
7189 OX40 Is a Potent Immune-Stimulating Target in Late-Stage Cancer Patients
Brendan D. Curti, Magdalena Kovacsovics-Bankowski, Nicholas Morris, Edwin Walker, Lana Chisholm, Kevin Floyd, Joshua Walker, Ilana Gonzalez, Tanisha Meeuswenn, Bernard A. Fox, Tarsem Moudgil, William Miller, Daniel Haley, Todd Coffey, Brenda Fisher, Laurie Delanty-Miller, Nicole Rymarchyk, Tracy Kelly, Todd Crocenzi, Eric Bernstein, Rachel Sanborn, Walter J. Urba, and Andrew D. Weinberg
Précis: This study offers clinical validation of a cancer therapy composed of a monoclonal antibody that can agonize signaling by the OX40 coreceptor on T cells, acting to enhance their antitumor properties as a generalized immunotherapy.
7199 Gut Microbiota Protects against Gastrointestinal Tumorigenesis Caused by Epithelial Injury
Yu Zhan, Po-Ju Chen, William D. Sadler, Fuyuan Wang, Sara Poe, Gabriel Núñez, Kathryn A. Eaton, and Grace Y. Chen
Précis: This study highlights the beneficial impact of commensal bacteria on limiting colon tumorigenesis and provides a model system that will enable us to identify bacteria that help reduce susceptibility to colon cancer.
7211 TLR9 Signaling in the Tumor Microenvironment Initiates Cancer Recurrence after Radiotherapy
Chan Gao, Anna Kozlovska, Sergey Nechaev, Haiqing Li, Qifang Zhang, Dewan M.S. Hossain, Claudia M. Kowolik, Peiguo Chu, Pietr Swiderski, Don J. Diamond, Sumanta P. Pal, Andrew Raultschesch, and Marcin Kortylewski

Précis: These findings suggest a rationale to improve the efficacy of cancer radiotherapy with inhibitors of the TLR9–STAT3 pathway, the activation of which appears to jump-start the regrowth of irradiated tumors.

MOLECULAR AND CELLULAR PATHOBIOLOGY
7222 APOBEC3B Upregulation and Genomic Mutation Patterns in Serous Ovarian Carcinoma

Précis: Mutagenesis by APOBEC3B explains some of the genomic instability seen in ovarian cancer and represents a potential novel drug target for ovarian cancer treatment.

PREVENTION AND EPIDEMIOLOGY
7232 Functional TLR5 Genetic Variants Affect Human Colorectal Cancer Survival
Sascha N. Klimosch, Asta Förfi, Jana Eckert, Jelena Knezevic, Melanie Bevier, Witigo von Schönfels, Nils Heits, Jessica Walter, Sebastian Hinz, Jesus Lasorz, Jochen Hampe, Dominik Hartl, Julia-Sophie Frick, Kari Hemminki, Clemens Schafmayer, and Alexander N.R. Weber

Précis: Genetic polymorphisms that alter the function of a Toll-like receptor and two of its effector molecules in colorectal cancer cells may exert an important impact on patient survival, with implications for biomarker and therapy development.

7243 Genetic Ancestry and Risk of Mortality among U.S. Latinas with Breast Cancer
Laura Fjehrman, Donglei Hu, Scott Huntsman, Esther M. John, Mariana C. Stern, Christopher A. Haiman, Eliseo J. Pérez-Stable, and Elad Ziv

Précis: Genetic factors and/or unmeasured differences in treatment or access to care should be further explored to understand and reduce ethnic disparities in breast cancer outcomes.

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY
7254 Lenalidomide Inhibits Lymphangiogenesis in Preclinical Models of Mantle Cell Lymphoma
Kai Song, Brett H. Herzog, Minjia Sheng, Jianxin Fu, J. Michael McDaniel, Jia Ruan, and Lujun Xia

Précis: This is the first report on the novel therapeutic antilymphangiogenic mechanism of the immunomodulatory drug lenalidomide in lymphoma, which highlights the potential pathogenic role of lymphangiogenesis in lymphoma progression and dissemination.

7265 An Intact Immune System Is Required for the Anticancer Activities of Histone Deacetylase Inhibitors
Alison C. West, Stephen R. Mattarollo, Jake Shortt, Leonie A. Cluse, Ailsa J. Christiansen, Mark J. Smyth, and Ricky W. Johnstone

Précis: These provocative findings suggest that HDAC inhibitors would be most effective if combined with immunotherapy in the clinic.

7277 Combined Targeting of PDK1 and EGFR Triggers Regression of Glioblastoma by Reversing the Warburg Effect
Kiran Kumar Velpula, Arinna Bhatia, Swapna Asuthkar, and Andrew J. Tsung

Précis: This work suggests that PDK1 may serve as a novel therapeutic target in treating glioblastoma along with EGFR, and targeting this protein complex may open up further treatment avenues in the metabolic modulation of glioblastoma.
TUMOR AND STEM CELL BIOLOGY

7290

ALDH1-Positive Cancer Stem Cells Predict Engraftment of Primary Breast Tumors and Are Governed by a Common Stem Cell Program

Emmanuelle Charafe-Jauffret, Christophe Ginestier, François Bertucci, Olivier Cabaud, Julien Wicinski, Pascal Finetti, Emmanuelle Josselin, José Adelaide, Tien-Tuan Nguyen, Florence Monville, Jocelyne Jacquemier, Jeanne Thomassin-Piana, Guillaume Pinna, Aurore Jalaguier, Eric Lambaudie, Gilles Houvenaeghel, Luc Xerri, Annick Harel-Bellan, Max Chaffanet, Patrice Viens, and Daniel Birnbaum

Précis: This work offers a convincing proof for the functional relevance of CSCs in breast cancer, and it establishes the reliability of patient-derived xenografts for use in developing personalized CSC therapies for breast cancer patients in the clinic.

7301

YEATS4 Is a Novel Oncogene Amplified in Non–Small Cell Lung Cancer That Regulates the p53 Pathway

Larissa A. Pikor, William W. Lockwood, Kelsie L. Thu, Emily A. Vucic, Raj Chari, Adi F. Gazdar, Stephen Lam, and Wan L. Lam

Précis: This study identifies a novel candidate oncogene that may be amplified in up to one fifth of non–small cell lung carcinomas, with implications for understanding etiology and drug resistance.

7313

GLI1 Interferes with the DNA Mismatch Repair System in Pancreatic Cancer through BHLHE41-Mediated Suppression of MLH1

Shingo Inaguma, Miho Riku, Mitsuyoshi Hashimoto, Hideki Murakami, Shinsuke Saga, Hiroshi Ikeda, and Kenji Kasai

Précis: A pivotal transcription factor in the Hedgehog signaling pathway is found to regulate the DNA mismatch repair system in pancreatic carcinoma cells, with potential implications for understanding how these cancers arise and how they might be controlled by Hedgehog pathway inhibitors.

Acknowledgment to Reviewers

AC icon indicates Author Choice

For more information please visit www.aacrjournals.org

ABOUT THE COVER

The antitumor effects of histone deacetylase inhibitors (HDACi) are repressed in immunocompromised mice. Rag-2γc−/− mice transplanted with Eμ-myc B-cell lymphomas and treated with HDACi succumb significantly earlier than wild-type tumor-bearing mice and die with high splenic tumor burden as shown in this image (magnification, ×10). HDACi are able to inhibit their target enzymes and mediate tumor cell apoptosis in immunocompromised mice, however, in the absence of a functional immune system, the therapeutic efficacy of HDACi is significantly diminished. These data demonstrate the importance of a host immune system for sustained antitumor responses mediated by HDACi and indicate that these agents could be combined with immunotherapy to enhance efficacy. For details, see article by West and colleagues on page 7265.