A Circadian Clock Transcription Model for the Personalization of Cancer Chronotherapy

Xiao-Mei Li1,4, Ali Mohammad-Djafari5, Mircea Dumitru5, Sandrine Dulong1,4, Elisabeth Filipski1,4, Sandrine Siffroi-Fernandez6, Ali Mteyrek1,4, Francesco Scaglione7, Catherine Guettier2, Franck Delaunay6, and Francis Lévi1,3,4

Abstract

Circadian timing of anticancer medications has improved treatment tolerability and efficacy several fold, yet with intersubject variability. Using three C57BL/6-based mouse strains of both sexes, we identified three chronotoxicity classes with distinct circadian toxicity patterns of irinotecan, a topoisomerase I inhibitor active against colorectal cancer. Liver and colon circadian 24-hour expression patterns of clock genes Rev-erba and Bmal1 best discriminated these chronotoxicity classes, among 27 transcriptional 24-hour time series, according to sparse linear discriminant analysis. An 8-hour phase advance was found both for Rev-erba and Bmal1 mRNA expressions and for irinotecan chronotoxicity in clock-altered Per2m/m mice. The application of a maximum-a-posteriori Bayesian inference method identified a linear model based on Rev-erba and Bmal1 circadian expressions that accurately predicted for optimal irinotecan timing. The assessment of the Rev-erba and Bmal1 regulatory transcription loop in the molecular clock could critically improve the tolerability of chemotherapy through a mathematical model–based determination of host-specific optimal timing. Cancer Res; 73(24); 7176–88. ©2013 AACR.

Major Findings

The optimal circadian timing of an anticancer drug was predicted despite its variation by up to 8-hour along the 24 hours among six mouse categories. This prediction relied on a mathematical model using liver circadian expression of clock genes Rev-erba and Bmal1 as input data and treatment tolerability as output parameter.

Introduction

A significant improvement in the safety of cancer therapies could result from adequate drug timing within the 24 hours, as shown in international randomized trials (1). Indeed a fixed circadian delivery schedule—so-called chronotherapy—improved tolerability of 5-fluorouracil/leucovorin/oxaliplatin up to 5-fold as compared with constant rate or differently timed chronomodulated infusions of the same drugs over the same infusion duration (2, 3). In experimental models, systemic and organ-specific toxicities of forty anticancer medications varied up to 10-fold according to circadian timing, supporting the concept of chronotoxicity (1). Strikingly, the timing of best drug tolerability coincided with that of best efficacy (1, 4–6). This puzzling finding was best explained both by the disruption of circadian clocks and by cell-cycle variability in cancer cells (7). Indeed the delivery of medications according to circadian timing could shift the current cancer treatment paradigm from "the worse the toxicity, the better the efficacy" toward "the better the tolerability, the better the efficacy" (1, 6, 8). Chronotherapy effects resulted from the rhythmic control of drug absorption, transport, metabolism, detoxification, drug targets, cell cycle, and apoptosis by circadian clocks (1, 9–16). Indeed, a molecular clock ticks within most body cells through 3 main interwoven transcriptional/posttranslational feedback loops. These molecular clocks are coordinated by a central pacemaker in the hypothalamic suprachiasmatic nuclei, through diffusible and neurophysiologic signals (17, 18). Recent extensive clinical data showed that male patients on a fixed chronotherapy schedule survived significantly longer than both female patients on the same schedule and male patients on conventional delivery (19, 20). We assumed that the fixed chronotherapy schedule was optimal in male patients, as it was developed on the basis of results from experiments in male mice and humans (19). Thus, it so happened that most
Clock Genes Expression for Personalized Chemotherapy Timing

Quick Guide to Equations and Assumptions

Here, we present the mathematical model that was designed for predicting the circadian rhythm in drug toxicity, using body weight loss (BWL) as a main toxicity endpoint, based on circadian clock gene expression data. The inputs of this linear system model are the circadian clock gene expressions data, whereas outputs are BWL data. The model matrix is trained to respond to each input (gene expression data) with the corresponding output (BWL data) for a finite number of cases (training set). Then, another set of data (validating set) is used for measuring model performance. For the training part, we adopt a Bayesian estimation approach that is summarized as follows: considering the linear model $g_k = Hf_k + \epsilon_k, k = 1, 2, \ldots, K$, where g_k represents the output vector (BWL), H is the model matrix, f_k represents the input data (gene expression data, $Reverber$-a and $Bmal$), ϵ_k represents modeling and measurements errors, and K is the number of cases. We assign a normal distribution for the errors ϵ_k, which gives the possibility to define the likelihood of all sets of data, and we also assign a normal distribution to the unknown elements of the matrix H to translate our prior knowledge about it:

$$p(g|H, f, \epsilon) \propto \exp \left\{ -\frac{1}{2} \sum_{k=1}^{K} \frac{1}{v_k} \| g_k - Hf_k \|^2 \right\}; p(H) \propto \exp \left\{ -\frac{1}{2v_H} \| H \|^2 \right\}$$ (A)

where v_k is the variance of the noise, v_H represents the a priori variance of the elements of the matrix H, and \propto represents "proportional to." Using the likelihood and the prior, we use the Bayes rule to obtain the expression of the posterior law:

$$p(H|g, f, \epsilon, v_H) \propto \exp \left\{ -\frac{1}{2} \left[\sum_{k=1}^{K} \frac{1}{v_k} \| g_k - Hf_k \|^2 + \frac{1}{v_H} \| H \|^2 \right] \right\}$$ (B)

Finally, we propose to use the maximum-a-posteriori (MAP) estimate defined as:

$$\hat{H} = \arg \max_H \{ p(H|g, f, \epsilon, v_H) \} = \arg \min_H \left\{ \frac{1}{2} J(H) \right\}$$ (C)

which leads to the optimization of the criterion:

$$J(H) = \frac{1}{v_H} \left(\sum_{i=1}^{K} \| g_i - Hf_i \|^2 + \lambda \| H \|^2 \right)$$ (D)

where $\lambda = \frac{v_H}{v_k}$. This criterion is a quadratic function of H and the argument of its optimum obtained analytically as:

$$\hat{H} = \sum_{i=1}^{K} g_i f_i^T \left(\sum_{i=1}^{K} f_i f_i^T + \lambda I \right)^{-1}$$ (E)

The proposed model is a simple linear one. The assigned prior laws are Gaussian (A). This simplifies the expression of the posterior law, which is also Gaussian (B), and both MAP and posterior mean (PM) estimators become the same, so that we have an analytical expression for it (E). No other assumption was added to the model. An interesting extension would involve the use of a prior law that could enforce the sparsity of the elements of the model matrix. However, the limited numbers of training and validating experimental data sets (4 and 2, respectively) call for caution regarding a broad generalization of model predictions.

scientific investigations have been usually conducted in male experimental models and humans, besides reproductive tract studies.

In the current study, a systems biology approach combined in vivo and in silico studies to concurrently address the issue of sex and genetic dependencies of optimal chemotherapy timing using irinotecan as a model drug. This anticancer agent is a topoisomerase 1 inhibitor with proven efficacy against colorectal and other cancers. Yet it can produce severe neutropenia, diarrhea, and fatigue, and compromise quality of life, and even survival (21–23). Previous mouse studies showed that circadian timing significantly modified hematologic and/or intestinal toxicities of irinotecan. However its optimal drug timing varied by up to 8 hours in mice under similar light/dark synchronization according to the different publication reports (24–26).

Here, we prospectively identified 3 distinct chronotoxicity classes according to sex and genetic background, despite the same photoperiodic synchronization, using both pharmacologic and molecular endpoints. We confirmed the role of molecular clock function for irinotecan chronotoxicity in mice with clock gene Per2 mutation. The data helped us design a mathematical model that accurately predicted for optimal irinotecan timing according to both clock gene circadian expressions and recapitulated sex and genetic differences. We discuss the implications of this new concept for improving treatment outcomes through personalized chronotherapy.
Materials and Methods

Animals and synchronization

All procedures were conducted in accordance with the French guidelines for animal care and experimentation (Decree 87-843). The studies were carried out in male and female mice of C57BL/6J, B6D2F1 (female C57BL/6 x male DBA2) and B6CBAF1 (female C57BL/6 x male CBA), 7 weeks of age, were purchased from Janvier. Mice were synchronized in an alternation of 12 hours of light (L) and 12 hours of darkness (D) (LD 12:12), with food and water ad libitum for 3 weeks before any intervention. Zeitgeber Time 0 (ZT0) and ZT12 corresponded to L onset and D onset, respectively. All manipulations during the dark span were conducted under dim red light (<7 lux).

Drug

Hydrochloride irinotecan powder was purchased from Chemos Gmbh and diluted in sterile water every 2 days on each study day, before injections. The final drug solution was injected intravenously into the retro-orbital venous sinus of the mice (10 mL/kg of body weight).

Experimental designs

For the systemic chronotoxicity experiments, irinotecan was administered daily at ZT3, ZT7, ZT11, ZT15, ZT19, or ZT23 for 4 consecutive days. Overall 720 mice received a daily dose level of 50 mg/kg for C57BL/6J and B6D2F1 or 80 mg/kg for B6CBAF1, according to previous equitoxicity data (27). For the target organ chronotoxicity experiments, mice in each potential chronotoxicity class (total N = 198) received daily irinotecan (50 mg/kg/d) for 4 consecutive days at the ZT corresponding to their respective best and worst tolerability, that is, ZT15 and ZT3 for class 1, ZT11 and ZT23 for class 2, and ZT15 and ZT7 for class 3. Blood cell counts and bone marrow and intestinal damage were assessed 2, 4, and 6 days after irinotecan treatment completion.

For the pharmacokinetic experiment, mice in each class (total N = 240) received a single irinotecan dose (50 mg/kg) at the ZT corresponding to its respective best and worst tolerability. Iterative blood sampling was conducted in separate groups of mice, from 1 minute to 12 hours postdose, according to a transverse design.

For the molecular characterization of the 3 chronotoxicity classes, we determined the mRNA expressions of selected genes in liver and/or in colon mucosa using a total of 72 mice from 3 chronotoxicity classes through tissue sampling at ZT0, ZT3, ZT6, ZT9, ZT12, ZT15, ZT18, or ZT21. We studied clock genes in liver and/or in colon mucosa using a total of 72 mice

Hematologic toxicity

Blood and 2 femurs were sampled from each mouse. Bone marrow cells were collected by repeatedly flushing the femurs with PBS through a 26-gauge needle. Circulating leukocytes and lymphocytes and bone marrow nucleated cells were counted with Cell-Dyn 3500R (Abbott Diagnostic).

Histopathology

The ileum and colon were obtained following treatment at 2 ZTs, respectively, corresponding to "best" or "worst" tolerability of each class, or at optimal ZT for Per2^{−/−} mice and fixed into 4% paraformaldehyde. Twenty-four hours later, the samples were dehydrated and embedded into paraffin. Sections were stained with hemalun/erythrosine/safran. Each slide was examined by the same histopathologist, and lesions were graded in a blind manner. Ileum and colon lesions were scored as 1 for each of the following items: surface epithelial cells, villi structure, and crypt gland cells. The sum of all 3 scores was computed as being a toxicity grade, ranging from 0 (normal) to 3 (alteration for each item). Apoptotic cells per 10 crypts were counted in ileum mucosa by a senior pathologist.

Plasma irinotecan and SN-38 pharmacokinetic

Blood was collected at 1, 15, 30, 60, 120, 240, 360, and 720 minutes after irinotecan injection. Plasma was obtained by centrifugation at 850 × g for 10 minutes at 4°C and then kept at −80°C until analyses.

Plasma concentrations of irinotecan and SN-38 were determined by high-performance liquid chromatography (HPLC; ref. 30). Plasma concentrations versus time data were analyzed by noncomparmental methods. Kinetic program was used to calculate area under the concentration curve (AUC), maximum concentration (C_{max}), clearance, volume of distribution (V_d), and elimination t_{1/2} values. AUC for 0 to 12 hours (AUC_{0-12h}) was calculated by using plasma concentration–time curves of irinotecan and SN-38. The AUC calculations were based on the linear trapezoidal rule. Plasma concentration of irinotecan and SN-38 determined in first minute was accepted as C_{max} parameter. The metabolic ratio was computed as AUC_{0-12h} of SN-38/AUC_{0-12h} of irinotecan.
Clock Genes Expression for Personalized Chemotherapy Timing

Quantitative reverse transcription PCR
Colon was sectioned and the colon lumen was washed with PBS and then cut open longitudinally. Colon mucosa was harvested by lightly scraping the surface, then suspended in PBS, and stored at −80°C until RNA extraction.
Total RNA from liver and colon mucosa were purified (31) and stored at −80°C until use. Total RNA was converted to cDNA using random primers and Superscript II (Invitrogen). Quantitative PCR was carried out with a Light Cycler 480 (Roche Diagnostics) using SYBR Green I dye detection. Expression levels were normalized to the levels of the constitutively and nonrhythmically expressed housekeeping gene 36B4, as previously described (32). All primers were obtained from Invitrogen Life Technologies.

Statistical analyses
Means and SEM were calculated and plotted for each set of parameters. Intergroup differences were statistically validated by multiple-way ANOVA with Scheffe post hoc tests.
Rhythm parameters were computed for each group by using standard population Cosinor procedures. Cosinor analysis provided mesor (rhythm-adjusted mean), double amplitude standard population Cosinor procedures. Cosinor analysis parameters. Intergroup differences were statistically validated Statistical analyses

Invitrogen Life Technologies.

Invitrogen Life Technologies.
Chronotoxicity patterns were similar in C57BL/6 and B6D2F1 mice of the same sex, but they differed in B6CBAF1. Sex-related differences were most obvious in B6D2F1 (Supplementary Fig. S2A and S2B and Supplementary Table S1).

The accuracy of optimal irinotecan timing was further determined among ZT7, ZT11, or ZT15 through adequately powered additional experiments in male and female B6D2F1 and B6CBAF1 mice. The optimal dosing time of irinotecan was confirmed to be ZT11 in male B6D2F1 (ANOVA, \(P = 0.034 \); post hoc Scheffe test, \(ZT7 < ZT11, P = 0.041 \); Supplementary Fig. S2D). In contrast, treatment at ZT15 achieved best tolerability in female B6D2F1 and B6CBAF1 mice (\(P = 0.01 \) and 0.04, respectively; Supplementary Fig. S2D and S2E).

The circadian waveform of the toxicity pattern displayed a unimodal 24-hour pattern, with a single fundamental period of 24 hours, both in male and female B6D2F1 mice (\(P < 0.0001 \)) and C57BL/6 (\(P < 0.001 \)), without any significant 12-hour harmonic component (Supplementary Table S1). Conversely, both 24- and 12-hour periodic components were validated in male and female B6CBAF1. Distinct 24-hour patterns characterized the reconstructed circadian signals as a function of sex and genetic background (Fig. 1C–E).

These results supported the identification of 3 chronotoxicity classes and their underlined representatives for subsequent studies to be conducted: female B6D2F1 and C57BL/6 as class 1, male B6D2F1 and C57BL/6 as class 2, and male and female B6CBAF1 as class 3. These representatives displayed statistically validated differences regarding chronotoxicity mesor, amplitude, timing, and reconstructed waveform (Fig. 1C–E; Supplementary Table S1).

In addition, the extents of both hematologic and intestinal toxicities also depended upon irinotecan timing, in good agreement with body weight change data (Fig. 2A–D). However, no consistent relation-linked drug toxicities and irinotecan or SN-38 plasma pharmacokinetics. The expected positive relation between chronotoxicity and plasma exposure to irinotecan and SN-38 was found for class 1, but not for classes 2 or 3 (Fig. 2E and F; Supplementary Tables S2 and S3). These findings called for investigations of molecular clock and clock-controlled pathways in liver, where irinotecan was bioactivated and detoxified, and in colon, an important toxicity target.

Class-dependent peripheral clocks

To identify molecular markers discriminating the 3 chronotoxicity classes, we determined the circadian patterns in the
mRNA expression of relevant genes in liver and colon mucosa (Fig. 3). The largest peak-to-trough differences were found for Rev-erbα, both in liver (by 360- to 380-fold according to class) and in colon (by 65- to 118-fold). Per2 expression varied 13- to 17-fold in liver and 7.5- to 15-fold in colon, whereas Bmal1 ranges 19- to 109-fold in liver and 10- to 15-fold in colon according to class. Cosinor analysis documented sinusoidal circadian rhythms for the expression of all 3 genes, with acrophases occurring near mid-light for Rev-erbα, near mid-dark for Per2, and near the end of the dark span for Bmal1. The expression of Rev-erbα during the light span and that Bmal1 at night mostly differentiated the 3 classes. The circadian peak of clock-controlled gene Weel in liver occurred at ZT9 in classes 1 and 3, as compared with ZT15 in class 2 (Fig. 3). In colon, Weel peaked at ZT12 in class 1 and ZT15 in classes 2 and 3. For DBP, a key clock controlled transcription factor driving circadian drug metabolism, the largest peak-to-trough differences varied 35- to 61-fold in liver and 4- to 18-fold in colon according to class. Circadian peak time occurred at ZT12 in classes 1 and 2 but at ZT9 in class 3 in colon (Fig. 3).

Main molecular patterns differentiating chronotoxicity classes

This issue was investigated through the application of PCA, independent component analysis, and factor analysis on the spectral patterns of the 24-hour liver and colon gene expression timeseries. The maximized log-likelihood ratio increased by 20 to 30 decibels, which corresponded to a 100- to 1,000-fold increase, as a result of the number of factors increasing from 1 to 7. Similarly, the error degrees of freedom decreased by about 60 following an increase in the number of factors from 1 to 7 (Fig. 4A and B). The minimum number of factors best describing the data ranged from 4 to 7 according to organ or class. This result was confirmed with a sparse PCA method, which further identified the most critical gene expression patterns within each factor. An LDA based on a sparse representation (sparse LDA) helped determine which gene expression patterns best discriminate the 3 classes. The 3 most discriminant gene expression patterns were Rev-erbα, Bmal1 and Top1 in liver, and Rev-erbα, Bmal1 and UGT1A1 in colon as shown on a...
Hinton display (Fig. 4C). Thus, the 3 classes were mostly differentiated by the circadian clock (Rev-erba and Bmal1) and the drug metabolism (Top1, UGT1A1) molecular markers. Other genes such as p53, Bax, DBP, and CES2 in liver and p53, Mdm2, and Bax in colon also contributed yet to a much lower degree (Supplementary Fig. S3).

Spearman correlations estimated dependency relations between circadian gene expression patterns in liver and colon. Tight reciprocal interdependencies linked circadian clock gene expression and metabolism, proliferation and apoptosis markers in class 2. This was not the case for classes 1 or 3, a finding supporting class-specific clock-controlled molecular pathways (Supplementary Fig. S4).

Experimental validation of clock-dependent irinotecan chronotoxicity

The respective roles of sex and molecular clock for irinotecan chronotoxicity were then investigated in Per2m/m mice. Moreover, the circadian rhythms in Rev-erba and Bmal1 mRNA expression was found here to be phase-advanced by 3 to 4 hours in male Per2m/m as compared both with corresponding WT, and with the 3 chronotoxicity classes. Although the
Rev-erbα 24-hour patterns were similar in male and female Per2m/m, this was not the case for the Bmal1, whose amplitude was decreased by 36% and acrophase was advanced by 1:40 in males (Fig. 5A).

The administration of irinotecan to Per2m/m mice resulted in about 3-fold variation in BWL according to circadian timing and sex. Least toxicity occurred at ZT7 both in male and in female mice. In contrast, worst toxicity occurred following dosing at ZT19 in males or ZT15, ZT19, or ZT23 in females (Fig. 5B).

Cosinor analysis and Hotelling t test revealed a statistically significant increase in mean toxicity \((P < 0.0001) \) and a 4-hour phase advance in females as compared with males \((P = 0.0008) \); Supplementary Table S1). Thus, the molecular clock, sex, and genetic background were independent determinants of irinotecan chronotoxicity. Following irinotecan dosing at ZT7, hematologic toxicity was significantly worse in Per2m/m as compared with WT, with regard to counts in circulating leukocytes \((4,961 \pm 2,864 \text{ vs. } 2,937 \pm 290, P = 0.035) \) and lymphocytes \((1,450 \pm 185 \text{ vs. } 2,556 \pm 283, P = 0.006) \), as well as nucleated cell counts in bone marrow \((2,550 \pm 324 \text{ vs. } 3,270 \pm 263, P = 0.10) \). Furthermore, the toxic damage for the ileum mucosa was also more severe in Per2m/m than in WT mice \((P = 0.03) \). Similarly, the count of mean apoptotic cells increased by 41% in Per2m/m as compared with WT in the ileum mucosa (Fig. 5C–E). In contrast, no significant genotype-related difference was found for toxic lesions or rate of apoptotic cells in colon mucosa. Thus, the critical role of Per2 for...
the hematologic and ileum toxicities of irinotecan was shown here for the first time. Given the different 24-hour patterns in Rev-erbα and Bmal1 expression in Per2m/m and in the 3 chronotoxicity classes, and the associated distinct irinotecan chronotoxicity patterns, a mathematical model was then sought to attempt predict for optimal irinotecan timing according to clock genes as input data.

A Rev-erbα and Bmal1 model for predicting irinotecan chronotoxicity

A linear model was inferred using a MAP Bayesian inference method. It was first trained and validated on the mean circa-dian time series from 3 chronotoxicity classes (classes 1, 2, and 3) and from female Per2m/m (M1). The prediction was then tested using data from male B6CBAF1, which belonged to class 3, and male Per2m/m (M2).

The prediction matrix related the toxicity values on the y-axis to the values of Rev-erbα and Bmal1 on the x-axis according to ZT. Most of the critical information derived from gene expression was obtained at ZT3 to ZT9 for Rev-erbα and at ZT18 to ZT24 for Bmal1 consistently with raw data displayed in Fig. 3 (Fig. 6A). The predicted time series clearly overlapped the real-time series in the 4 groups of the training set (Fig. 6B). Moreover, an accurate prediction of optimal irinotecan timing was obtained for the 4 WT strains, through any permutation between the training set and the validation set. However, the model did not fit all the real data for M2, as a single representative of a clock mutation was available in the training set. Nevertheless, the model reliably predicted the dosing time associated with minimum toxicity for both WT male B6CBAF1 at ZT7 and male Per2m/m at ZT15 in the validation set (Fig. 6C).

Discussion

Our study is the first one that showed that optimal chemotherapy timing could be predicted by clock gene expression...
patterns irrespective of sex and genotype. Different circadian toxicity profiles were shown for irinotecan in 3 C57BL/6-based mouse strains of both sexes despite synchronization with the same light/dark cycle. Three chronotoxicity classes were identified. The overall toxicity pattern had a single 24-hour periodic component for classes 1 and 2, whereas both 24- and 12-hour components were found for class 3. Optimal timing occurred 4 hours earlier in class 2 as compared with classes 1 and 3. The magnitude of timing-related improvement in tolerability was twice as large in class 1 as compared with classes 2 or 3. Prominent target organ toxicities were hematologic for class 1, intestinal for class 2, and both hematologic and intestinal for class 3. No consistent relation was found here between drug plasma disposition and toxicity according to circadian timing among the 3 classes, in agreement with prior reports in male ICR mice and in patients with cancer (24, 36). Plasma exposure to irinotecan and other anticancer drugs varied more than 10-fold among individual patients with cancer despite the administration of the same dose level, without debated consistent consequences for adverse events (37, 38). Moreover, a positive relationship between irinotecan and SN-38 plasma AUCs was reported for neutropenia but an opposite one for diarrhea in patients with cancer (22, 39). Indeed, neutropenia was severely worsened in the patients whose UGT1A1 genotype resulted in

Figure 6. Mathematical model for irinotecan optimal timing prediction according to circadian mRNA expressions of Rev-erbα and Bmal1. A, prediction matrix developed on the training set using input data from female and male B6D2F1 and female B6CBAF1 (classes 1, 2, and 3, respectively). y-axis, toxicity values at different ZT. x-axis, Rev-erbα and Bmal1 mean expressions according to ZT. The relative importance of gene expression at ZTI (abscissa) versus BWL at ZTI (ordinate) is visualized using an intensity gray scale ranging from darkest for lowest value to lightest for highest value. B, results in the training set using classes 1, 2, 3, and female Per2min (M1). C, validation set using male B6CBAF1 (class 3) and male Per2min (M2). The accurate prediction of optimal irinotecan timing (ZT associated with minimum BWL) in each of the 6 mouse categories.
impaired glucuronidation of SN-38 by hepatic UGT1A1 enzymes (40). However, ATP-binding cassette transporters, as well as sex and race also contributed significantly to neutropenia in patients with cancer, with less hematologic toxicity being reported in female patients (41). In our study, mathematical analysis of 27 genomic circadian time series pinpointed Rev-erba and Bmal1 clock markers as critical determinants for both optimal timing and amplitude of the tolerability rhythm. The relevance of these molecular clock markers was then validated experimentally in Per2^m/m mice kept under usual photoperiodic synchronization. Furthermore, the circadian amplitude and phase of the mRNA expression of clock-controlled genes Wee1 and DBP varied not only according to tissue, as earlier reported (42, 43), but also according to chronotoxicity class. Clock genes Clock, Bmal1, or Cry and clock-controlled genes DBP, Tef, and Hif1 were reportedly moderated cyclophosphamide and/or mitoxantrone toxicities at 1 or 2 selected times of day (11, 44). However, no prior study systematically investigated whether clock genes expression patterns could predict optimal drug timing and the respective roles of sex and genotype on such prediction.

The preclinical models here placed circadian clocks and gene expression dynamics at the forefront of the personalization of anticancer therapies. Indeed the predictive value of genetic signatures about toxicity outcomes was moderated by host factors, such as sex and race (20, 45, 46). Moreover, the usefulness of a single genomic tumor assessment for the identification of the most effective drugs was tempered by the clonal heterogeneity of cancer cells and the dynamic changes both in gene mutations and epigenetics (47). Our data support the need for the integration of the molecular clock jointly with sex and genetic background as critical players in the regulation of metabolism, cell cycle, and apoptosis events (Fig. 7). Indeed, tailoring treatment delivery to the circadian clocks of an individual has the potential to increase treatment tolerability several fold. Anticancer drugs, such as irinotecan, not only target cancer cells but also damage rapidly renewing tissues, including bone marrow and gut mucosa, sometimes resulting in life-threatening neutropenia, asthenia, or diarrhea (48, 49). It is thus crucial to minimize toxicities through personalized drug timing. Indeed treatment toxicities not only deteriorate the quality of life of patients with cancer but also impair the successful development of new anticancer therapies. Recent clinical data further revealed that the minimization of toxicity optimized the anticancer efficacy of circadian chronotherapy. This was not the case for conventional chemotherapy delivery, where the occurrence of hematologic toxicity usually predicted for improved efficacy (4, 5, 8).

In summary, the current study showed that the circadian clock was a critical determinant for achieving several fold improvements in irinotecan tolerability through its delivery at an optimal circadian time. However, optimal drug timing ranged over an 8-hour span according to sex and genetic background despite exposure to the same light/dark schedule. Mathematical modeling using circadian expression of clock genes Rev-erba and Bmal1 as input data enabled accurate prediction of optimal irinotecan timing, a novel finding whose relevance now deserves testing both in experimental settings for other anticancer agents and in clinical situations for irinotecan.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: X.-M. Li, A. Mohammad-Djafari, S. Dulong, E. Filipski, F. Delaunay, F. Lévi

Development of methodology: A. Mohammad-Djafari, M. Dumitru, S. Dulong

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S. Dulong, E. Filipski, S. Siffroi-Fernandez, A. Mihyrek, F. Scaglione

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): X.-M. Li, A. Mohammad-Djafari, M. Dumitru, S. Dulong, E. Filipski, F. Scaglione

Writing, review, and/or revision of the manuscript: X.-M. Li, A. Mohammad-Djafari, S. Dulong, F. Scaglione, F. Delaunay, F. Lévi

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): X.-M. Li, A. Mohammad-Djafari, M. Dumitru, E. Filipski

Study supervision: X.-M. Li, A. Mohammad-Djafari, E. Filipski, F. Lévi

Pathologic analysis: C. Guettier

Acknowledgments

The authors thank C. Ahovesso, V. Hossard (INSERM) and S. Brangolo (IBV) for technical assistance in experimental studies and U. Albrecht (University of Freiburg, Freiburg, Switzerland) for the gift of Per2^m/m mice.

Grant Support

This work was supported in part by grant LSHG-CT-2006-037543 from the European Union through STREP TEMPO (Temporal genomics for tailored chronotherapeutics) to F. Lévi, F. Delaunay, and F. Scaglione; and C55ys project through grant ANR 2009-SYSB-002-01-04 (ERASysBio+ and FP7) to F. Lévi, F. Delaunay, and A. Mohammed-Djafari; and the Association pour la Recherche sur le Temps Biologique et la Chronothérapie (ARTBC International, hospital Paul Brousse, Villejuif, France) to X.-M. Li.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 31, 2013; revised October 18, 2013; accepted October 18, 2013; published OnlineFirst October 23, 2013.
References

A Circadian Clock Transcription Model for the Personalization of Cancer Chronotherapy

Xiao-Mei Li, Ali Mohammad-Djafari, Mircea Dumitru, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-13-1528

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2013/10/22/0008-5472.CAN-13-1528.DC1

Cited articles
This article cites 47 articles, 13 of which you can access for free at:
http://cancerres.aacrjournals.org/content/73/24/7176.full#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/73/24/7176.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.