Contents

BREAKING ADVANCES

1035
Highlights from Recent Cancer Literature

REVIEW

1037
Heterogeneity of Neoplastic Stem Cells: Theoretical, Functional, and Clinical Implications
Peter Valent, Dominique Bonnet, Stefan Wöhrer, Michael Andreeff, Mhairi Copland, Christine Chomienne, and Connie Eaves

MEETING REPORT

1046
Twenty-fourth Annual Pezcoller Symposium: Molecular Basis for Resistance to Targeted Agents
Richard Marais, William Sellers, David Livingston, and Enrico Mihich

PRIORITY REPORTS

1050
Clonal Progression of Prostate Cancers from Gleason Grade 3 to Grade 4
Adam G. Sowalsky, Huihui Ye, Glenn J. Bubley, and Steven P. Balk
Précis: Although most low grade prostate cancers appear to be indolent, this study establishes that a subset can progress to higher grades and may already harbor features that can be used to predict their progression.

1056
Unconventional Role of the Inwardly Rectifying Potassium Channel Kir2.2 as a Constitutive Activator of RelA in Cancer
Inkyoung Lee, Sook-Ja Lee, Tong Mook Kang, Won Ki Kang, and Chaehwa Park
Précis: Expression of potassium ion channels occurs with some frequency in various human cancers, where they may offer possible therapeutic targets, but their contributions to cancer pathogenicity have not been well understood.

CLINICAL STUDIES

1063
Natural Human Plasmacytoid Dendritic Cells Induce Antigen-Specific T-Cell Responses in Melanoma Patients
Précis: This is the first clinical study to use naturally occurring plasmacytoid dendritic cells (DC) to treat metastatic melanoma, representing an important evolution in the development of more effective DC-based vaccines for cancer treatment.

INTEGRATED SYSTEMS AND TECHNOLOGIES

1076
Methylome Profiling Reveals Distinct Alterations in Phenotypic and Mutational Subgroups of Myeloproliferative Neoplasms
Sangeeta Nischal, Sanchari Bhattacharyya, Maximilian Christopeit, Yiting Yu, Li Zhou, Tushar D. Bhagat, Davendra Sohal, Britta Will, Yongkai Mo, Masako Suzuki, Animesh Pardanani, Michael McDevitt, Jaroslav P. Maciejewski, Ari M. Melnick, John M. Gesally, Ulrich Steidl, Alison Moliterno, and Amit Verma
Précis: Results show that distinct patterns of DNA methylation are seen in different subgroups of myeloproliferative syndromes, defining the potential to use hypomethylating agents in certain subgroups of this disease.

1086
Impact of Tumor Progression on Cancer Incidence Curves
E. Georg Luebeck, Kit Curtius, Jhyoun Jeon, and William D. Hazelton
Précis: A model-based analysis of cancer incidence curves reveals that they harbor significant information about several hidden processes of tumor initiation, preslignant clonal expansion, malignant transformation, and even limited information on tumor growth before clinical detection.

A Journal of the American Association for Cancer Research iii www.aacrijournals.org
Endocan Is Upregulated on Tumor Vessels in Invasive Bladder Cancer Where It Mediates VEGF-A–Induced Angiogenesis
Filip Roudnicky, Cedric Poyet, Peter Wild, Sarah Krampitz, Fabrizia Negrini, Reto Huggerberger, Anja Bogler, Robert Stöhr, Arndt Hartmann, Maurizio Provenzano, Vivianne I. Otto, and Michael Detmar

Précis: A more tumor-selective approach to disrupt VEGF signaling is revealed as a strategy for antiangiogenic cancer therapy, focusing on a molecule that mediates VEGF action but is expressed selectively only in the tumor vasculature.

Targeting Galectin-1 Overcomes Breast Cancer-Associated Immunosuppression and Prevents Metastatic Disease
Tomás Dalotto-Moreno, Diego O. Croci, Juan P. Cerliani, Verónica C. Martínez-Allo, Sebastián Dergan-Dylon, Santiago P. Méndez-Huergo, Juan C. Stupirski, Daniel Mazal, Eduardo Osnaga, Marta A. Toscano, Victoria Sundblad, Gabriel A. Rabinovich, and Mariana Salatino

Précis: Findings offer preclinical genetic validation to block an immunosuppressive lectin commonly expressed in aggressive cancers as a strategy to reverse immune escape and blunt metastatic progression.

Inhibition of Rapamycin-Induced AKT Activation Elicits Differential Antitumor Response in Head and Neck Cancers

Précis: This study reports a functional assay for the mTOR pathway that may be clinically useful for stratifying head and neck cancer patients who are being considered for mTOR pathway targeting therapies.

Moesin Is a Glioma Progression Marker That Induces Proliferation and Wnt/β-Catenin Pathway Activation via Interaction with CD44
Xiaoping Zhu, Fabiana C. Morales, Nitin Kumar Agarwal, Turgut Dogruulk, Mihai Gagea, and Maria-Magdalena Georgescu

Précis: This study reveals how an actin membrane-connecting protein acts as a oncogene to drive the function of an important stem cell molecule in glioblastoma, the most aggressive form of brain cancer, with implications for more effective therapy of this disease.

Oncogenic Activation of Pak1-Dependent Pathway of Macropinocytosis Determines BCG Entry into Bladder Cancer Cells
Gil Redelman-Sidi, Gopa Iyer, David B. Solit, and Michael S. Glickman

Précis: Findings of this study not only reveal how an important cancer biotherapy for bladder cancer works, but also suggest clinical strategies that could personalize the therapy to predict or improve its efficacy in patients.

Trask Loss Enhances Tumorigenic Growth by Liberating Integrin Signaling and Growth Factor Receptor Cross-Talk in Unanchored Cells
Danislav S. Spassov, Ching Hang Wong, Sunny Y. Wong, Jeremy F. Reiter, and Mark M. Moasser

Précis: Tumor cell growth is restricted to anchored states of the cell unless there is a loss of function in the cell surface protein Trask, which exerts a tumor-suppressing function that blocks anchorage-independent cell growth.
The Noncoding RNA MALAT1 Is a Critical Regulator of the Metastasis Phenotype of Lung Cancer Cells
Tony Gutschner, Monika Hammerle, Moritz Elßmann, Jeff Hsu, Youngsoo Kim, Gene Hung, Alexey Revenko, Gayatri Arun, Marion Stentrup, Matthias Groß, Martin Zörnig, A. Robert MacLeod, David L. Spector, and Sven Diederich

Précis: Findings identify a long noncoding RNA with fundamental importance in lung cancer metastasis and potential therapeutic application in metastasis prevention.

TUMOR AND STEM CELL BIOLOGY

MYC Regulation of CHK1 and CHK2 Promotes Radioresistance in a Stem Cell-like Population of Nasopharyngeal Carcinoma Cells
Wen-Jun Wang, Si-Pei Wu, Jia-Bin Liu, Yong-Sheng Shi, Xue Huang, Qian-Bing Zhang, and Kai-Tai Yao

Précis: Targeting an important DNA-damage-checkpoint signaling axis with an important role in stem cells may offer an especially robust therapeutic strategy to reverse stem cell radioresistance.

Epigenetic Repression of miR-31 Disrupts Androgen Receptor Homeostasis and Contributes to Prostate Cancer Progression
Pei-Chun Lin, Ya-Lin Chiu, Samprit Banerjee, Kyung Park, Juan Miguel Mosquera, Eugenia Giannopoulou, Pedro Alves, Ashutosh K. Tewari, Mark B. Gerstein, Himisha Beltran, Ari M. Melnick, Olivier Elemento, Francesca Demichelis, and Mark A. Rubin

Précis: This study identifies a novel biomarker for prostate cancer progression and introduces a new mechanistic concept associate with AR regulation of cell cycle progression.

Dysregulation of Cholesterol Homeostasis in Human Prostate Cancer through Loss of ABCA1
Byron H. Lee, Margaret G. Taylor, Peggy Robinet, Jonathan D. Smith, Jessica Schweitzer, Ephraim Sehayek, Sara M. Falzarano, Cristina Magi-Galluzzi, Eric A. Klein, and Angela H. Ting

Précis: A key cholesterol efflux transporter is hypermethylated in late stage prostate cancer, leading to higher levels of intracellular cholesterol and potentiation of tumor progression.
ABOUT THE COVER

Galectin-1, a carbohydrate-binding protein, abundantly expressed at sites of tumor growth and metastasis, promotes tumor progression by influencing diverse cancer-related events including tumor cell migration, angiogenesis, and tumor-immune escape. Dalotto-Moreno and colleagues show that galectin-1 contributes to immunosuppression during progression of breast cancer. Human breast cancer biopsies expressed substantial amounts of galectin-1, which positively correlated with tumor grade. Silencing Gal1 expression in the 4T1 breast tumor model reduced tumor growth and lung metastases. This effect was accompanied by a diminished frequency and suppressive activity of CD4⁺CD25⁺Foxp3⁺ regulatory T cells in both the tumor and metastatic lungs. For details, see article by Dalotto-Moreno and colleagues on page 1107.