Contents

Cancer Research

February 15, 2013 • Volume 73 • Number 4

<table>
<thead>
<tr>
<th>Contents</th>
<th>Microenvironment and Immunology</th>
</tr>
</thead>
</table>
| **BREAKING ADVANCES** | 1257 | STC1 Expression by Cancer-Associated Fibroblasts Drives Metastasis of Colorectal Cancer
| 1257 | Highlights from Recent Cancer Literature | Cristina Peña, Maria Virtudes Céspedes, Maja Bradic Lindh, Sara Kiflemariam, Artur Mezheyevskii, Per-Henrik Edqvist, Christina Haggjöf, Helgi Birgisson, Linda Bojmar, Karin Jirström, Per Sandström, Eleanor Olsson, Srinivas Veerla, Alberto Gallardo, Tobias Sjöblom, Andy C.-M. Chang, Roger R. Reddel, Ramón Mangués, Martin Augsten, and Arne Ostman |
| **REVIEWS** | 1259 | **PRÉCIS:** Findings reveal a mechanistic basis for understanding how cancer-associated fibroblasts activated in the tumor microenvironment act to promote cancer metastasis, with implications for arresting this deadly process. |
| 1259 | Regulation of the Na⁺/H⁺ Exchanger (NHE1) in Breast Cancer Metastasis | Schammim R. Amith and Larry Fliegel |
| **CLINICAL STUDIES** | 1265 | Oncolytic Vaccinia Virus Disrupts Tumor-Associated Vasculature in Humans
| 1265 | Caroline J. Breitbach, Rozanne Arulanandam, Naomi De Silva, Steve H. Thorne, Richard Patt, Manijeh Daneshmand, Anne Moon, Carolina Ilkow, James Burke, Tae-Ho Hwang, Jeong Heo, Mong Cho, Hannah Chen, Fernando A. Angarita, Christina Addison, J. Andrea McCart, John C. Bell, and David H. Kirn |
| **INTEGRATED SYSTEMS AND TECHNOLOGIES** | 1276 | Nitroreductase, a Near-Infrared Reporter Platform for In Vivo Time-Domain Optical Imaging of Metastatic Cancer
| 1276 | Emmet McCormack, Elisabeth Silden, Richard M. West, Tina Pavlin, David R. Micklem, James B. Lorens, Bengt Erik Haug, Michael E. Cooper, and Bjorn Tore Gjertsen |
| **MOLECULAR AND CELLULAR PATHOBIOLOGY** | 1298 | Amplification of FRS2 and Activation of FGFR/FRS2 Signaling Pathway in High-Grade Liposarcoma
| 1298 | Keqiang Zhang, Kevin Chu, Xiwei Wu, Hanlin Gao, Jinfu Wang, Yat-Ching Yuan, Sofia Loera, Kimberley Ho, Yafan Wang, Warren Chow, Frank Un, Peiguo Chu, and Yun Yen | |
| 1308 | BRMS1 Suppresses Lung Cancer Metastases through an E3 Ligase Function on Histone Acetyltransferase p300 | Yuan Liu, Marty W. Mayo, Alykhan S. Nagji, Emily H. Hall, Lisa S. Shock, Aishen Xiao, Edward B. Stelow, and David R. Jones |
| 1308 | **PRÉCIS:** FGFR/FRS2 signaling may play an important role in the development of high-grade liposarcoma and, therefore, represents a potential therapeutic target. |
| 1318 | Midkine Promotes Neuroblastoma through Notch2 Signaling | Satoshi Kishida, Ping Mu, Shin Miyakawa, Masatoshi Fujiwara, Tomoyuki Abe, Kazuma Sakamoto, Akira Onishi, Yoshikazu Nakamura, and Kenji Kadomatsu |
| 1318 | **PRÉCIS:** Preclinical investigations establish a critical cell survival signaling in MYCN-driven neuroblastoma, suggesting new therapeutic directions to improve treatment. |
Inhibition of Cholinergic Signaling Causes Apoptosis in Human Bronchioalveolar Carcinoma
Jamie K. Lau, Kathleen C. Brown, Brent A. Thornhill, Clayton M. Crabtree, Aaron M. Dom, Theodore R. Witte, W. Elaine Hardman, Christopher A. McNees, Cody A. Stover, A. Betts Carpenter, Haitao Luo, Yi C. Chen, Brandon S. Shiflett, and Piyali Dasgupta

Precis: Findings prompt immediate clinical testing of approved drugs that may improve the efficacy of treatments for a certain subtype of lung cancer.

TUMOR AND STEM CELL BIOLOGY

FGF-2 Disrupts Mitotic Stability in Prostate Cancer through the Intracellular Trafficking Protein CEP57
Rolando Cuevas, Nina Korzeniewski, Yanis Tolstov, Markus Hohenfellner, and Stefan Duensing

Precis: This provocative study reveals an unexpected link between the tumor microenvironment and chromosomal instability.

Contrasting Hypoxic Effects on Breast Cancer Stem Cell Hierarchy Is Dependent on ER-α Status
Hannah Harrison, Lynsey Rogerson, Hannah J. Gregson, Keith R. Brennen, Robert B. Clarke, and Göran Landberg

Precis: This study describes the response of a breast cancer subtype to hypoxia, with implications for more effective anti-hypoxic and antiangiogenic therapies.

miR-7 Suppresses Brain Metastasis of Breast Cancer Stem-Like Cells By Modulating KLF4

Precis: This important study identifies a functional biomarker or therapeutic target for brain metastasis in breast cancer, which remains a mainly untreatable and deadly aspect of progression in this disease.

Targets Cancer Therapy with a 2-Deoxyglucose–Based Adriamycin Complex
Jie Cao, Sisi Cui, Siwen Li, Changli Du, Junmei Tian, Shunan Wan, Zhiyu Qian, Yueqing Gu, Wei R. Chen, and Guangji Wang

Precis: A simple conjugate of adriamycin that improves cancer cell targeting limits the cardiotoxic liabilities of this drug, offering broad applications in cancer treatment.

Hyperactivated JNK Is a Therapeutic Target in pHV-Deficient Renal Cell Carcinoma
Jiabin An, Huiren Liu, Clara E. Magyar, Yanchuan Guo, Mysore S. Veena, Eri S. Srivatsan, Jiaoti Huang, and Matthew B. Rettig

Precis: This study provides insight into HIFα-independent mechanisms that drive renal cancer and offers new opportunities for therapeutic targeting of this disease.

Hyperactivated JNK Is a Therapeutic Targeted Cancer Therapy with a Proapoptotic Peptide
Jiaoti Huang, and Matthew B. Rettig

Precis: Findings define the mechanism of action of an antiangiogenic drug currently in phase III trials and suggest how to leverage its efficacy in combination with other drugs that target the tumor microenvironment.

FGF-2 Disrupts Mitotic Stability in Prostate Cancer through the Intracellular Trafficking Protein CEP57
Rolando Cuevas, Nina Korzeniewski, Yanis Tolstov, Markus Hohenfellner, and Stefan Duensing

Precis: This provocative study reveals an unexpected link between the tumor microenvironment and chromosomal instability.

Contrasting Hypoxic Effects on Breast Cancer Stem Cell Hierarchy Is Dependent on ER-α Status
Hannah Harrison, Lynsey Rogerson, Hannah J. Gregson, Keith R. Brennen, Robert B. Clarke, and Göran Landberg

Precis: This study describes the response of a breast cancer subtype to hypoxia, with implications for more effective anti-hypoxic and antiangiogenic therapies.

miR-7 Suppresses Brain Metastasis of Breast Cancer Stem-Like Cells By Modulating KLF4

Precis: This important study identifies a functional biomarker or therapeutic target for brain metastasis in breast cancer, which remains a mainly untreatable and deadly aspect of progression in this disease.
LETTER TO THE EDITOR

Oxidation-Mediated DNA Crosslinking Contributes to Toxicity of 6-Thioguanine in Human Cells — Letter
Nanne K.H. de Boer, Dirk P. van Asseldonk, Margien L. Seinen, and Adriaan A. van Bodegraven

CORRECTION

Correction: Chloroquine in Cancer Therapy: A Double-Edged Sword of Autophagy

ABOUT THE COVER

The microRNA network is considered to play critical roles in tumor progression; however, little information is available for microRNA in cancer stem-like cells (CSC). The results of microRNA profile analysis revealed that miR-7 is significantly downregulated in CSCs that are highly metastatic to the brain, and the expression of this microRNA significantly suppressed the ability of CSCs to metastasize to the brain in vivo. miR-7 was also found to be capable of modulating KLF4. Consistently, the expression of miR-7 and KLF4 in brain-metastatic lesions of breast cancer patients was found to be significantly downregulated and upregulated, respectively. High expression of KLF4 was also inversely correlated to brain-metastasis free survival of breast cancer patients. For details, see the article by Okuda and colleagues on page 1434.