<table>
<thead>
<tr>
<th>Content Section</th>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREAKING ADVANCES</td>
<td>2023</td>
<td>Highlights from Recent Cancer Literature</td>
<td></td>
</tr>
<tr>
<td>REVIEWS</td>
<td>2025</td>
<td>Genetic Susceptibility to Triple-Negative Breast Cancer</td>
<td>Kristen N. Stevens, Celine M. Vachon, and Fergus J. Couch</td>
</tr>
<tr>
<td>PRIORITY REPORTS</td>
<td>2044</td>
<td>CUL3 and NRF2 Mutations Confer an NRF2 Activation Phenotype in a Sporadic Form of Papillary Renal Cell Carcinoma</td>
<td>Aikseng Ooi, Karl Dykema, Asif Ansari, David Petillo, John Snider, Richard Kanhoski, John Anema, David Craig, John Carpten, Bin-Tean Teh, and Kyle A. Furge</td>
</tr>
<tr>
<td></td>
<td>2052</td>
<td>Differential Contributions of STAT5A and STAT5B to Stress Protection and Tyrosine Kinase Inhibitor Resistance of Chronic Myeloid Leukemia Stem/Progenitor Cells</td>
<td>Luana Casetti, Séverine Martin-Lammerée, Imen Najjar, Isabelle Plo, Sylvie Augé, Lydia Roy, Jean-Claude Chomel, Evelyne Lauret, Ali G. Turhan, and Isabelle Dusantier-Fourt</td>
</tr>
<tr>
<td></td>
<td>2070</td>
<td>Targeting uPAR with Antagonistic Recombinant Human Antibodies in Aggressive Breast Cancer</td>
<td>Aaron M. LeBeau, Sai Duriseti, Stephanie T. Murphy, Francois Pepin, Byron Hann, Joe W. Gray, Henry F. VanBrocklin, and Charles S. Craig</td>
</tr>
<tr>
<td></td>
<td>2082</td>
<td>Enhanced Sonographic Imaging to Diagnose Lymph Node Metastasis: Importance of Blood Vessel Volume and Density</td>
<td>Li Li, Shiro Morii, Mizuho Kodama, Maya Sakamoto, Shoki Takahashi, and Tetsuya Kodama</td>
</tr>
<tr>
<td></td>
<td>2070</td>
<td>Targeting uPAR with Antagonistic Recombinant Human Antibodies in Aggressive Breast Cancer</td>
<td>Aaron M. LeBeau, Sai Duriseti, Stephanie T. Murphy, Francois Pepin, Byron Hann, Joe W. Gray, Henry F. VanBrocklin, and Charles S. Craig</td>
</tr>
<tr>
<td></td>
<td>2082</td>
<td>Enhanced Sonographic Imaging to Diagnose Lymph Node Metastasis: Importance of Blood Vessel Volume and Density</td>
<td>Li Li, Shiro Morii, Mizuho Kodama, Maya Sakamoto, Shoki Takahashi, and Tetsuya Kodama</td>
</tr>
</tbody>
</table>
A Multifunctional Chimeric Chaperone Serves as a Novel Immune Modulator Inducing Therapeutic Antitumor Immunity
Xiaofei Yu, Chunqing Guo, Huanfa Yi, Jie Qian, Paul B. Fisher, John R. Subjeck, and Xiang-Yang Wang

Précis: A novel strategy targets the immunosuppressive tumor environment using a chimeric immune chaperone, leading to systemic T cell-mediated tumor inhibition.

Aire Deficiency Promotes TRP-1–Specific Immune Rejection of Melanoma
Meng-Lei Zhu, Anil Nagavalli, and Maureen A. Su

Précis: Findings define a pathway of autoimmune control in thymic epithelial cells that can modulate immune responses against melanoma in otherwise healthy individuals, with implications for enhancing immune responses to this deadly skin cancer.

Autoimmune Gastritis Mediated by CD4+ T Cells Promotes the Development of Gastric Cancer

Précis: Findings provide the first direct evidence that autoimmune gastritis supports the development of stomach cancer and also offer a useful new model to deepen knowledge of how inflammation drives malignancy in this setting.

Anti-CD20 Antibody Promotes Cancer Escape via Enrichment of Tumor-Evoked Regulatory B Cells Expressing Low Levels of CD20 and CD137L
Monika Ehnman, Edoardo Missiaglia, Erika Folestad, Joanna Selfe, Carina Strell, John Thway, Bertha Brodin, Kristian Pietras, Janet Shipley, Arne Ostman, and Ulf Eriksson

Précis: Findings speak to the importance of tumor-evoked B-regulatory cells in driving immune escape and cancer progression, also suggesting a basis for understanding the procancerous risks of B cell–depleting therapies like rituximab.

Distinct Effects of Ligand-Induced PDGFRα and PDGFRβ Signaling in the Human Rhabdomyosarcoma Tumor Cell and Stroma Cell Compartments
Monika Ehman, Edoardo Missiaglia, Erika Folestad, Joanna Selfe, Carina Strell, John Thway, Bertha Brodin, Kristian Pietras, Janet Shipley, Arne Ostman, and Ulf Eriksson

Précis: Distinct patterns of ligand-dependent activity for the two major forms of PDGF signaling were found in either the stromal or tumor cell compartments of aggressive muscle cell tumors, both of clinical relevance.

Cooperative Activation of Tissue-Specific Genes by pRB and E2F1
Stephen Flowers, Fuhua Xu, and Elizabeth Moran

Précis: This study offers novel mechanistic insights into why Rb deficiency is so closely associated with the development of osteosarcoma.

Loss of TGF-β Adaptor β2SP Activates Notch Signaling and SOX9 Expression in Esophageal Adenocarcinoma
Shumer Song, Dipen M. Maru, Jaffer A. Ajani, Chia-Hsin Chan, Soichiro Honjo, Hui-Kuan Lin, Arlene Correa, Wayne L. Hofsetetter, Marta Davila, John Stroehlein, and Lopa Mishra

Précis: Intriguing findings suggest one mechanism through which TGF-β signaling switches from tumor suppressing to tumor promoting during malignant progression.

FOXP3 Regulates Sensitivity of Cancer Cells to Irradiation by Transcriptional Repression of BRCA1
Weiquan Li, Hiroto Katoh, Linhong Wang, Xiaochun Yu, Zhanwen Du, Xiaoli Yan, Pan Zheng, and Yang Liu

Précis: A transcription factor implicated in immune tolerance and mutated in prostate and breast cancer cells is reported here to regulate DNA repair through the BRCA1 pathway, possibly directly linking DNA repair processes to immune escape in cancer.

Sunlight UV-Induced Skin Cancer Relies upon Activation of the p38α Signaling Pathway
Kangdong Liu, Donghoon Yu, Yong-Yeon Cho, Ann M. Bode, Weiya Ma, Ke Yao, Shengqing Li, Jixia Li, G. Tim Bowden, Ziming Dong, and Zigang Dong

Précis: Solar UV, which includes UVA and UVB wavelengths contributing to skin cancers, must activate a MAPK-related stress pathway, with implications for prevention and treatment of these common malignancies.
FOXO3a Is a Major Target of Inactivation by PI3K/AKT Signaling in Aggressive Neuroblastoma
Evan E. Santo, Peter Stroeken, Peter V. Sluis, Jan Koster, Rogier Versteeg, and Ellen M. Westerhout

Precis: This study highlights a pivotal role for FOXO3a in understanding the pathobiology of neuroblastoma and suggests its utility as a biomarker for prognosis and therapeutic responses to PI3K/AKT inhibitors being developed clinically.

Proteomic Analysis of Ubiquitin Ligase KEAP1 Reveals Associated Proteins That Inhibit NRF2 Ubiquitination
Bridgid E. Hast, Dennis Goldfarb, Kathleen M. Mulvaney, Michael A. Hast, Priscila F. Siesser, Feng Yan, D. Neil Hayes, and Michael B. Major

Precis: Findings offer mechanistic insight into the broad cytoprotection afforded cancer cells that activate the NRF2 transcription factor, as a route to escape killing by cytotoxic therapeutic treatments.

Common Genetic Polymorphisms Modify the Effect of Smoking on Absolute Risk of Bladder Cancer
Montserrat Garcia-Closas, Nathaniel Rothman, Jonine D. Figueroa, Ludmila Prokunina-Olsson, Summer S. Han, Dalsu Baris, Eric J. Jacobs, Nuria Malats, Immaculata De Vivo, Demetris Albanes, Mark P. Purdue, Sapna Sharma, Yi-Ping Fu, Manolis Kogevinas, Zhaoming Wang, Wei Tang, Adorina Tardón, Consol Serra, Alfredo Carrato, Reina García-Closas, Josep Lloreta, Alison Johnson, Molly Schwenn, Margaret R. Karagas, Alan Schned, Gerald Andriole, Jr, Robert Grubb, III

Precis: Smoking prevention strategies may have more public health impact on subsets of the population that are at elevated genetic risk.

Erlotinib Prolongs Survival in Pancreatic Cancer by Blocking Gemcitabine-Induced MAPK Signals
Koji Miyabayashi, Hideaki Ijichi, Dai Mohri, Motohisa Tada, Keiske Yamamoto, Yoshinari Asaoka, Tsuneo Ikeoue, Keisuke Tateishi, Yousuke Nakai, Hiroyuki Isayama, Yasuyuki Morishita, Masao Omata, Harold L. Moses, and Kazuhiko Koike

Precis: Findings address clinical questions concerning why the EGFR inhibitor erlotinib benefits KRAS-mutant pancreatic cancer patients when combined with gemcitabine.

mTOR Inhibitors Block Kaposi Sarcoma Growth by Inhibiting Essential Autocrine Growth Factors and Tumor Angiogenesis

Precis: Findings offer a new disease model and preclinical proof-of-concept for the use of mTOR inhibitors to treat a major HIV-associated cancer as well as related tumors that are also derived from endothelial cells.

Targeting the Deregulated Spliceosome Core Machinery in Cancer Cells Triggers mTOR Blockade and Autophagy
Virginie Quidville, Samar Alsafadi, Aicha Goubar, Frédéric Commo, Véronique Scott, Catherine Pioche-Durieu, Isabelle Girault, Sonia Bacconais, Eric Le Cam, Vladimir Lazar, Suzette Delaloge, Mahasti Saghatelian, Patricia Pautier, Philippe Morice, Philippe Dessen, Stéphan Vagner, and Fabrice André

Precis: Certain Sm components of snRNPs involved in RNA splicing may constitute appealing therapeutic targets for a generalized strategy to treat cancer.

HDAC6 Inhibition Restores Ciliary Expression and Decreases Tumor Growth
Sergio A. Gradilone, Brynn N. Radtke, Pamela S. Bogert, Bing Q. Huang, Gabriella B. Gajdos, and Nicholas F. LaRusso

Precis: HDAC6 is essential in epithelial cells for formation of the primary cilia, organelles that are essential and sufficient to organize normal cell structure, growth, and function but that are disrupted during neoplastic transformation.
Cisplatin Resistance Associated with PARP Hyperactivation
Judith Michels, Ilia Vitale, Lorenzo Galluzzi, Julien Adam, Ken André Olausen, Oliver Kepp, Laura Senovilla, Ibtissam Talhaoui, Justine Guegan, David Pierre Enot, Monique Talbot, Angélique Robin, Philippe Girard, Cédric Oréar, Delphine Lissa, Abdul Qader Sukkurwala, Pauline Garcia, Parviz Behmann-Motlagh, Kimitoshi Kohno, Gen Sheng Wu, Catherine Brenner, Philippe Dessens, Murat Saparbaev, Jean-Charles Soria, Maria Castedo, and Guido Kroemer

Precis: Results affect the use of PARP inhibitors in lung adenocarcinoma patients who relapse after cisplatin-based chemotherapy by suggesting a mechanism-based biomarker that can predict responses to PARP inhibitor monotherapy.

The Insulin Receptor Negatively Regulates the Action of Pseudomonas Toxin-Based Immunotoxins and Native Pseudomonas Toxin
Xiu Fen Liu, David J. FitzGerald, and Ira Pastan

Precis: Attenuating the expression of the insulin receptor can specifically enhance the cytotoxic action of certain immunotoxins and has potential utility for immunoconjugates used in cancer treatment.

Inhibition of Protein Kinase CK2 Reduces Cyp24a1 Expression and Enhances 1,25-Dihydroxyvitamin D3 Antitumor Activity in Human Prostate Cancer Cells
Wei Luo, Wei-Dong Yu, Yingyu Ma, Mikhail Chernov, Donald L. Trump, and Candace S. Johnson

Precis: Results suggest an approach to enhance the potency of the anticancer effects of vitamin D3 used to treat certain cancers by retarding the core mechanism in its degradation and clearance.

Downregulation of the Novel Tumor Suppressor DHRAS1 Predicts Poor Prognosis in Esophageal Squamous Cell Carcinoma
Ying-Hui Zhu, Li Fu, Lelei Chen, Yan-Ru Qin, Haibo Liu, Fajun Xie, Tingting Zeng, Sui-Sui Dong, Jiangchao Li, Yan Li, Yongdong Dai, Dan Xie, and Xin-Yuan Guan

Precis: A novel Ras-like protein is discovered to be pivotal to the pathogenesis of esophageal cancers that tend to be aggressive and rising in incidence in developed countries.
About the Cover

Antibodies against epithelial cell adhesion molecule (EpCAM) and cytokeratins are commonly used to capture and detect circulating tumor cells (CTC). However, these approaches are potentially hampered by the fact that migratory cancer cells may undergo a process called the epithelial-mesenchymal transition that is characterized by downregulation of epithelial markers, including cytokeratins and EpCAM. Images are of EpCAM(−)/CD45(−) circulating tumor cells immunostained with antibodies against cytokeratin (red, top), PLS3 (green, middle), and vimentin (orange, bottom). All sections were counterstained with DAPI (blue). PLS3 was expressed on EpCAM(−) CTCs that displayed reduced cytokeratin staining, accompanied by strong staining for vimentin. For details, see article by Yokobori and colleagues on page 2059.