Proteomic Analysis of Ubiquitin Ligase KEAP1 Reveals Associated Proteins That Inhibit NRF2 Ubiquitination

Bridgid E. Hast, Dennis Goldfarb, Kathleen M. Mulvaney, Michael A. Hast, Priscila F. Siesser, Feng Yan, D. Neil Hayes, and Michael B. Major

Abstract

Somatic mutations in the KEAP1 ubiquitin ligase or its substrate NRF2 (NFE2L2) commonly occur in human cancer, resulting in constitutive NRF2-mediated transcription of cytoprotective genes. However, many tumors display high NRF2 activity in the absence of mutation, supporting the hypothesis that alternative mechanisms of pathway activation exist. Previously, we and others discovered that via a competitive binding mechanism, the proteins WTX (AMER1), PALB2, and SQSTM1 bind KEAP1 to activate NRF2. Proteomic analysis of the KEAP1 protein interaction network revealed a significant enrichment of associated proteins containing an ETGE amino acid motif, which matches the KEAP1 interaction motif found in NRF2. Like WTX, PALB2, and SQSTM1, we found that the dipeptidyl peptidase 3 (DPP3) protein binds KEAP1 via an "ETGE" motif to displace NRF2, thus inhibiting NRF2 ubiquitination and driving NRF2-dependent transcription. Comparing the spectrum of KEAP1-interacting proteins with the genomic profile of 178 squamous cell lung carcinomas characterized by The Cancer Genome Atlas revealed amplification and mRNA overexpression of the DPP3 gene in tumors with high NRF2 activity but lacking NRF2 stabilizing mutations. We further show that tumor-derived mutations in KEAP1 are hypomorphic with respect to NRF2 inhibition and that DPP3 overexpression in the presence of these mutants further promotes NRF2 activation. Collectively, our findings further support the competition model of NRF2 activation and suggest that "ETGE"-containing proteins such as DPP3 contribute to NRF2 activity in cancer.

Introduction

Constitutive activation of the NF-E2–related factor 2 (NRF2) cap-n-collar transcription factor is emerging as a prominent molecular feature of many tumors. When active, NRF2 controls the expression of ~200 genes that collectively function to maintain a healthy intracellular redox balance, clear electrophilic xenobiotics, and degrade damaged and misfolded proteins (1, 2). The leading hypothesis posits that whereas short-term NRF2 activation antagonizes oncogenesis by curtailing oxidative damage, constitutive activation promotes the survival of metabolically stressed cancer cells, as well as cancer cells under chemotherapeutic insult. Indeed, depletion of NRF2 from cancer-derived cell lines results in apoptosis and increased sensitivity to chemotherapeutic agents (3). In human non–small cell lung cancer, tumors showing high levels of NRF2 protein are associated with a poor outcome and increased resistance to therapy (4–6).

At basal state, NRF2 protein level and activity is maintained at low levels through ubiquitin-dependent proteosomal degradation (7–9). The mechanics of this ubiquitination, which is conceptualized in the 'hinge-and-latch' model, involves a homodimeric E3 ubiquitin ligase complex comprising the KEAP1 substrate recognition module and a cullin-3 scaffold (refs. 10 and 11; Fig. 1A). An amino-terminal DLG and ETGE motif within NRF2 independently binds 2 KEAP1 monomers within the complex, yielding a 2:1 stoichiometry of KEAP1:NRF2. The intermolecular protein dynamics governing ubiquitination of NRF2 relies on the differential affinities between the ETGE and DLG motifs for KEAP1; the ETGE motif binds KEAP1 with approximately 100-fold greater affinity than the DLG (10). In response to oxidative stress, modification of reactive cysteines within KEAP1 induces a conformational change within the homodimer. This architectural restructuring releases the low-affinity DLG motif from KEAP1, thus repositioning NRF2 in a conformation unfavorable for ubiquitination (10–13).

Recent cancer genomic studies reported somatic mutation of NRF2 or KEAP1 in 34% of squamous cell lung carcinoma and...
KEAP1. KEAP1 inactivation is shown through cysteine modification and lysed in RIPA buffer. All anti-KEAP1 antibodies and buffers used for Western analysis are listed in Supplementary Methods. For streptavidin and FLAG affinity purification, cells were lysed in 0.1% NP-40 lysis buffer. Cell lysates were cleared by centrifugation and incubated with streptavidin resin (GE Healthcare) or FLAG resin (Sigma) before washing with lysis buffer and eluting with NuPAGE loading buffer. For Western analysis, lysed in RIPA buffer 60 hours posttransfection. All antibodies and buffers used for Western analysis are listed in Supplementary Methods.

Affinity pulldowns and Western blotting

For streptavidin and FLAG affinity purification, cells were lysed in 0.1% NP-40 lysis buffer. Cell lysates were cleared by centrifugation and incubated with streptavidin resin (GE Healthcare) or FLAG resin (Sigma) before washing with lysis buffer and eluting with NuPAGE loading buffer. For Western analysis, HEK293T cells were transiently transfected and lysed in RIPA buffer 60 hours posttransfection. All antibodies and buffers used for Western analysis are listed in Supplementary Methods.

Materials and Methods

Tissue culture, transfections, and siRNAs

HEK293T and H2228 cells were obtained from the American Tissue and Culture Collection, which authenticates cell lines using short tandem repeat analysis. Cell lines were not passaged for more than 6 months after resuscitation. HEK293T cells were grown in Dulbecco’s Modified Eagle’s Medium, supplemented with 10% FBS and 1% GlutaMAX (Life Technologies) in a 37°C humidified incubator with 5% CO₂. H2228 cells were grown in RPMI supplemented with 10% FBS. KEAP1 KO mouse embryonic fibroblasts (MEF) were cultured in IMDM supplemented with 10% FBS. The KEAP1−/− MEFs were kindly provided by Thomas Kensler and Nobunao Wakabayashi. Expression constructs were transfected in HEK293T cells with Lipofectamine 2000 (Life Technologies). siRNA sequences are provided in Supplementary Methods.
Plasmids, expression vectors, and site-directed mutagenesis

Expression constructs in the SBPHA backbone were generated with standard PCR techniques. Constructs for dipeptidyl peptidase III (DPP3) and DPP3 ΔETGE were a generous gift from Maja Abramic. The reporter gene fusion construct for human hNQO1-ARE-luciferase was a kind gift from Jeffrey Johnson. The SLK-HA construct was a generous gift from Dr. Andrey Cybulsky. Expression constructs for ETGE-containing proteins were obtained from Open Biosystems and cloned into a custom lentiviral vector (pHAGE-CMV-FLAG-DEST). ETGE deletion mutants were generated by PCR-based mutagenesis and sequence verified before use (GENEWIZ).

ARE-luciferase quantification

For DNA, cells were transfected with expression constructs, FLAG-KEAP1, FLAG-NRF2, hNQO1-ARE luciferase, and a control plasmid containing Renilla luciferase driven by a constitutive cytomegalovirus (CMV) promoter. Approximately 24 hours posttransfection, NRF2-mediated transcription was measured as the ratio of Firefly to Renilla luciferase activity (Promega Dual-Luciferase Reporter Assay System). For siRNA, HEK293T cells stably expressing the ARE-luciferase and Renilla luciferase control reporters were transfected with siRNA. Approximately 60 hours posttransfection, activation was measured. For the assay depicted in Fig. 6E, treatment with 50 μM tBHQ was conducted 48 hours posttransfection, and activation was measured 60 hours posttransfection.

Cell-based NRF2 ubiquitination experiments

HEK293T stably expressing SBPHA-KEAP1 cells were transfected with VSV-UB1, FLAG-NRF2, and SBPHA-DPP3. Venus-NPM1 was used such that each condition received the same mass of DNA. Cells were lysed in 0.1% NP-40 lysis buffer.

RNA isolation, reverse transcription, and semi-quantitative real-time-PCR

Total RNA from cells was harvested in TRIzol (Life Technologies) reagent according to the manufacturer’s instructions. RNA was quantified by UV spectrophotometry, and cDNA was created using the RevertAid First Strand cDNA synthesis Kit (Fermentas). PCR was conducted in triplicate with 30 cycles of amplification with 1 second denaturation at 95°C and 5 second annealing at 60°C, on an ABI 7900HT Fast Realtime PCR machine. Quantitative Light Cycler PCR primers are listed in the Supplementary Methods.

Crystallographic modeling

The coordinates for the KEAP1–NRF2 peptide complex and DPP3 were downloaded from the RCSB Protein Data Bank (PDB IDs 1X2R and 3FY1, respectively). The superposition of the ETGE motifs of NRF2 and DPP3 was done in PyMOL (The PyMOL Molecular Graphics System, Version 1.3, Schrödinger, LLC). PyMOL was used to prepare the images used in Fig. 4D–G.

Affinity purification and mass spectrometry

For streptavidin and FLAG affinity purification, cells were lysed in 0.1% NP-40 lysis. Cell lysates were incubated with streptavidin or FLAG resin and washed 5 times with lysis buffer. The precipitated proteins were trypsinized directly off beads using the FASP Protein Digestion Kit (Protein Discovery). For tandem purification of the FLAG–KEAP1 and SBPHA–DPP3 complex (Fig. 3B), protein complexes were eluted after the first affinity purification with either 150 μg/mL FLAG peptide or 50 mmol/L biotin.

Protein identification, filtering, and bioinformatics

Detailed methods for the mass spectrometry and peptide identification are provided in Supplementary Methods. Filtering of false interactions from nontandem, wild-type (WT) experiments was achieved using SPOTLITE, with an internal lab dataset of 158 streptavidin experiments on 60 different baits, and using a 10% FDR for the entire dataset. FLAG-based APMS data were not scored with SPOTLITE because our FLAG-specific reference dataset is prohibitively small. Proteins identified in tandem or mutant experiments were accepted if they passed the SPOTLITE filtering on the nontandem, WT experiments. Unfiltered data and associated SPOTLITE results are provided as Supplementary Table S1.

Motif analysis

Identification of enriched 4-mer amino acid sequences was conducted using a 1-tail Fisher exact test (Supplementary Table S2). We individually tested each of the 13,265 4-mer sequences present among the KEAP1 interactors, taking into account the number of interacting proteins, interacting proteins having the motif, total proteins in the UniProtKB/SwissProt database, and the total number of proteins having the motif within UniProtKB/SwissProt. Bonferroni correction was applied because of multiple hypothesis testing.

Immunostaining

For subcellular localization of exogenously expressed proteins, cells were cotransfected with the indicated plasmids and plated on 10 μg/mL fibronectin-coated coverslips. Cells were fixed in 4% paraformaldehyde in cytoskeletal buffer for 15 minutes, and coverslips were mounted to slides using the Prolong Gold antifade reagent (Molecular Probes). Images were acquired using a Zeiss LSM5 Pascal Confocal Laser Scanning Microscope equipped with a ×63/1.42 Oil PlanApo objective lenses. Localization of endogenous KEAP1 was determined by immunostaining cells as described earlier, except: (1) cells were fixed in 4% PFA in cytoskeletal buffer for 15 minutes and permeabilized with 0.1% Triton in PBS for 5 minutes, (2) after blocking in 1% BSA/PBS for 1 hour, cells were double stained for KEAP1 (Proteintech) and flag (Sigma) at 4°C, overnight, followed by incubation with FITC-conjugated-donkey anti-rabbit IgG and RRX-conjugated-donkey anti-mouse IgG (Jackson ImmunoResearch Laboratories) at room temperature for 2 hours, and (3), images were acquired using a Zeiss LSM710 Spectral Confocal Laser Scanning Microscope.
Results

Proteomic analysis of the KEAP1 protein interaction network

We defined the KEAP1 protein interaction network by affinity purification and shotgun mass spectrometry (APMS; Fig. 1B). In total, the KEAP1 complex was analyzed 13 times, where variations in affinity purification, detergent solubilization, and cell treatment helped to maximize comprehensive network mapping (Supplementary Table S1). True interactions were identified from false positives using SPOT-LITE, a novel probabilistic scoring algorithm that couples direct and indirect data to identify false positive interactions within APMS data (Fig. 1B and Supplementary Table S1; manuscript under review). Of 42 high confidence KEAP1-interacting proteins identified, 17 contain an ETGE, ESGE, or both. To determine if this motif is enriched within the KEAP1 protein interaction network (PIN) beyond chance observation, we conducted a Fisher exact test. The ETGE motif was identified as the only significant 4 amino acid sequence within the KEAP1 PIN (Supplementary Table S2). Together, these data support and expand the "ETGE" competition model of KEAP1 regulation.

The ETGE motif is required for binding to KEAP1

We selected 8 ETGE-containing proteins and validated their association with KEAP1 (Fig. 2A and B). Western blot analysis of affinity-purified KEAP1 protein complexes revealed the presence of endogenously expressed DPP3, FAM117B, MCM3, SLK, and MAD2L1 (Fig. 2B). Expression of exogenous TSC22D4 and WDR1 also showed interaction with KEAP1 (Fig. 2C). To map the domain within KEAP1 responsible for binding the ETGE proteins, full-length KEAP1, the KEAP1 KELCH domain, or the KEAP1 RTB domain were purified and endogenous associated proteins were detected by Western blot. With the exception of WDR1 and TSC22D4, which bound only full length KEAP1, DPP3, FAM117B, MCM3, SLK, and MAD2L1 bound the KELCH domain of KEAP1 (Fig. 2B and C). To directly evaluate a role for the ETGE motif in binding KEAP1, we generated ETGE-deletion mutants for FAM117B, MCM3, TSC22D4, WDR1, DPP3, and SLK. Like WTX and PALB2, deletion of the ETGE (ΔETGE) motif within these proteins abrogated KEAP1 binding (Fig. 2D and E). Finally, functional impact of the ETGE-containing proteins on NRF2-mediated transcription was evaluated. Of the proteins tested, DPP3 and TSC22D4 strongly activated NRF2-mediated transcription in an ETGE-dependent manner, the former of which was previously identified as an activator of NRF2-dependent transcription in a gain-of-function screen (ref. 29; ref. Fig. 2F). Overexpression of SLK also activated NRF2-mediated transcription, although this activation was independent of the ETGE motif (Supplementary Fig. S1).

DPP3 is a KEAP1 interacting protein

The protein dipeptidyl peptidase III (DPP3) had the greatest impact on NRF2-dependent transcription and was the most abundant protein within the KEAP1 PIN (Fig. 2F and Supplementary Table S1, respectively; ref. 30). To further explore DPP3, we defined and compared the DPP3 PIN to the KEAP1 PIN (Fig. 3A). "With the exception of the observed interaction
Figure 3. DPP3 is a KEAP1 interacting protein. A, schematic protein interaction network for DPP3 and KEAP1. Node and edge coloring and sizing are consistent with Fig. 1. B, HEK293T cells stably expressing KEAP1 and DPP3 were lysed and subjected to 2 sequential rounds of affinity purification before mass spectrometry. Data shown represent biological duplicate experiments, wherein the order of affinity purifications was reversed. C, protein complexes from HEK293T cells stably expressing FLAG-KEAP1 were affinity purified and analyzed by Western blot. D, protein complexes from HEK293T cells stably expressing SBPHA-DPP3 or SBPHA-DPP3-Y318F were streptavidin affinity purified and analyzed by Western blot. E, endogenous DPP3 from HEK293T cells was immunopurified and analyzed by Western blot for the indicated endogenous proteins. F, protein complexes were FLAG affinity purified from the lung adenocarcinoma cell line H2228 stably expressing FLAG-KEAP1 and analyzed by Western blot. G, HEK293 cells were transfected with venus-KEAP1 and the indicated Cherry-fused DPP3 expression construct. H, HEK293T cells transfected with NQO1-ARE-luciferase, constitutively active Renilla luciferase, and the indicated expression plasmid before lysis and luciferase quantification (*, P < 0.05 across 3 biological replicate experiments).
between KEAP1 and DPP3, the integrated PIN revealed no common interacting proteins. We also defined the PIN for DPP3ΔETGE; as expected KEAP1 was not observed (Supplementary Table S1). To more rigorously characterize the KEAP1–DPP3 protein complex, we conducted sequential affinity purifications for FLAG-KEAP1 and SBPHA-DPP3. Using HEK293T cells stably expressing both proteins, we purified FLAG–KEAP1 complexes and then from the resulting eluate, purified DPP3 with streptavidin (Fig. 3B, top). The reciprocal sequential purification was done and analyzed by APMS (Fig. 3B, bottom).

Despite observing over 1,500 spectral counts representing each bait protein, the only protein identified in both APMS experiments was SQSTM1, represented by 15 and 1 total spectra, respectively (Fig. 3B and Supplementary Table S1). Together these data argue that the KEAP1–DPP3 complex is largely exclusive from other interacting proteins.

We next tested whether endogenously expressed DPP3 and KEAP1 associate. First, endogenous DPP3 was detected within FLAG–KEAP1 affinity purified protein complexes from HEK293T cells (Fig. 3C). Second, endogenous KEAP1 affinity for DPP3 was detected with stably transfected cells expressing indicated fusion constructs (Fig. 3D).

Figure 4. DPP3 interacts with the KELCH domain of KEAP1 via its ETGE motif. A, protein complexes from HEK293T cells stably expressing SBPHA-KEAP1, SBPHA-BTB, and SBPHA-KELCH were streptavidin affinity purified and analyzed by Western blot. B, cells stably expressing FLAG-KEAP1 or the FLAG-KELCH domains of KEAP1 were transfected with the indicated SBPHA-DPP3 construct before affinity purification and Western blot. C, protein complexes from HEK293T cells stably expressing the indicated fusion protein were streptavidin affinity purified and analyzed by Western blot. D, HEK293T cells were transiently cotransfected with FLAG-GFP, FLAG-DPP3-WT, or FLAG-DPP3-AAGE (alaD) before FLAG-affinity purification and Western blot. E, the KELCH domain of Keap1 (PDB ID 1C22R) adopts a 6-bladed \(\beta\)-propeller structure (cyan). The ETGE motif of NRF2 (orange) binds near the central pore of the \(\beta\)-propeller. F, the structure of human DPP3 (PDB ID 3FVY, blue) reveals an ETGE motif (residues 480–483, green) in an unstructured surface loop. G, KEAP1 binding to the ETGE peptide (orange sticks) is stabilized by both hydrogen bonds (to serine and asparagine residues, cyan sticks) and electrostatic interactions (to arginine residues, cyan sticks) with KEAP1. H, superposition of the NRF2 ETGE motif bound to KEAP1 with the ETGE motif of DPP3 reveals similar conformations.

Hast et al.

Cancer Res; 73(7) April 1, 2013

Cancer Research
purified with SBPHA–DPP3 (Fig. 3D). Finally, we detected KEAP1 within immunopurified endogenous DPP3 protein complexes (Fig. 3E). In addition to these studies in HEK293T cells, DPP3 was also detected within KEAP1 protein complexes isolated from H2228 lung cancer cells (Fig. 3F). As protein complex purification is subject to post-lysis interactions, we determined if DPP3 and KEAP1 colocalized within cells. Although discrete subcellular localizations were not observed, exogenously expressed DPP3 colocalized with both exogenous and endogenous KEAP1 protein; DPP3ΔETGE also colocalized with KEAP1 (Fig. 3G and H). Comparing transfected versus untransfected cells, the expression of DPP3 did not affect KEAP1 subcellular localization (Fig. 3G). Finally, we tested whether the catalytic activity of DPP3 affected its association with KEAP1. Stably expressed WT and the catalytically inactive (Y318F) mutant (31) of DPP3 bound endogenous KEAP1 (Fig. 3D), indicating that the catalytic activity of DPP3 is not required for KEAP1 binding. Consistent with this, WT DPP3 or DPP3Y318F similarly activated NRF2-dependent transcription when overexpressed (Fig. 3I).

The ETGE motif is required for DPP3 binding to KEAP1

Like WTX, PALB2, NRF2, and most of the ETGE-containing proteins evaluated, endogenous DPP3 associated with the KELCH domain of KEAP1 (Fig. 4A). To validate that the ETGE motif is required for this binding, constructs encoding SBPHA-DPP3 or SBPHA-DPP3ΔETGE were transiently transfected into cells stably expressing FLAG-tagged full length KEAP1 or the KELCH domain. WT DPP3 bound full length KEAP1 and the KELCH domain; however, DPP3ΔETGE was unable to bind KEAP1 or the KEAP1 KELCH domain (Fig. 4B). Similarly, whereas endogenous KEAP1 failed to immunopurify with DPP3ΔETGE, it did copurify with DPP3-WT and the catalytic mutant DPP3Y318F (Fig. 4C). These data were confirmed by APMS of DPP3ΔETGE and DPP3Y318F (Supplementary Table S1). Deletion of the ETGE motif within DPP3 may render the protein unstable and/or misfolded, which could account for lack of binding to KEAP1. To address this possibility, we tested the ability of a DPP3 alanine mutant to bind KEAP1. Like DPP3ΔETGE, alanine point mutations within the domain (ETGE—AAGE) abolished KEAP1 binding (Fig. 4D).

Crystallographic modeling revealed that NRF2 binds KEAP1 near the central pore of the KELCH β-propeller (Fig. 4E; refs. 10, 13, 32). Using the crystal structure of DPP3, we asked if the ETGE motif within DPP3 and NRF2 adopt similar tertiary conformations. The ETGE motif in DPP3 lies on an unstructured loop on the surface of the protein (Fig. 4F; ref. 33). It is therefore in a sterically favorable position to bind to KEAP1, as opposed to being buried within the globular domains. Similar to the NRF2 peptide, 3 tyrosine residues and 1 phenylalanine residue defines the binding surface that accommodates the specific conformation of the ETGE peptide of DPP3 (Fig. 4G). Strikingly, the ETGE motif of DPP3 and NRF2 adopt identical conformations when superimposed, suggesting that the ETGE motif of both proteins may interact with KEAP1 in a similar manner (Fig. 4H; root mean square deviation = 0.05 Å between Cα atoms).

DPP3 competes with endogenous NRF2 for binding to KEAP1

We tested whether DPP3 association with KEAP1 displaced NRF2. As homodimeric KEAP1 binds a single NRF2 molecule via 2 amino acid motifs (Fig. 1A), competition experiments required the isolation of monomeric KEAP1. We created 2 double stable cell lines: the first expressed both SBPHA-KEAP1 and FLAG-KEAP1, and the second expressed SBPHA-KEAP1 and the FLAG-tagged BTB domain of KEAP1. Sequential affinity purification with streptavidin and FLAG resins purified KEAP1 homodimer or a KEAP1–BTB "pseudo-monomer," allowing us to test whether DPP3 competes with NRF2 for KEAP1 binding (Fig. 5A). Compared to a truncated form of WTX that does not interact with KEAP1 (25), DPP3 overexpression resulted in reduced NRF2 binding to the pseudo-monomer KEAP1 but not to the KEAP1 homodimer (Fig. 5B; compare lanes 3 and 4 to lanes 7 and 8). In contrast, when DPP3ΔETGE was introduced into each double-stable cell line, NRF2 binding to both the KEAP1–KEAP1 homodimer and KEAP1–BTB heterodimer was maintained (Fig. 5C; compare lanes 5 and 6). These findings suggest that DPP3 competes with NRF2 for binding to KEAP1 in an ETGE-dependent manner.

The "hinge-and-latch" model predicts that loss of binding of the NRF2 DLG motif to KEAP1 results in a reduction of NRF2 ubiquitination and subsequent degradation. Given that DPP3 competes for binding to KEAP1 via the ETGE motif (Fig. 5A–C), we tested if DPP3 overexpression reduced NRF2 ubiquitination in an ETGE-dependent manner. Affinity purification of exogenous NRF2 followed by Western blot analyses revealed relative levels of NRF2 ubiquitination. As the amount of WT DPP3 increased, ubiquitination of NRF2 decreased, as compared to control (Fig. 5D; compare lanes 2 and 6). Consistent with its inability to bind KEAP1, DPP3ΔETGE did not reduce NRF2 ubiquitination (Fig. 5E). These data suggest that overexpression of DPP3 alters the architecture of NRF2 bound to dimeric KEAP1, and ultimately decreases NRF2 ubiquitination.

DPP3 activates NRF2 signaling in an ETGE-dependent fashion

To establish functional significance of DPP3 as a regulator of NRF2 activity, we determined whether DPP3 gain-of-function and loss-of-function impacted NRF2 transcriptional activity. Overexpression of DPP3, but not DPP3ΔETGE or DPP3ΔAα significantly induced NRF2-dependent expression of an antioxidant responsive Firefly luciferase reporter (Fig. 6A). For loss-of-function, we designed and tested the silencing efficacy of 3 nonoverlapping siRNAs targeting DPP3 (Fig. 6B). siRNA-mediated silencing of DPP3 suppressed NRF2-mediated transcription of the ARE reporter, similar to that of NRF2 silencing (Fig. 6C). To validate this phenotype using exogenous NRF2 readouts, qPCR was employed to monitor the expression of 2 well-established NRF2 target genes: heme oxygenase-1 (HMOX1) and glutamate-cysteine ligase modifier (GCSm). In agreement with the reporter data, DPP3 siRNAs reduced HMOX1 and GCSm transcript levels similar to that of NRF2 silencing (Fig. 6D). Finally, the model predicts that DPP3 gain-
of-function or loss-of-function would not affect NRF2 activity after treatment with a pathway agonist, as NRF2 would already be in a sterically unfavorable conformation for KEAP1-mediated ubiquitination and degradation (Fig. 1A). Consistent with this hypothesis, neither DPP3 siRNAs (Fig. 6F) nor overexpression of DPP3 (Fig. 6G) were able to suppress NRF2-mediated transcription after treatment with the small molecule, tert-butylhydroquinone (tBHQ).

DPP3 expression and DNA copy number positively correlates with NRF2 activity in squamous cell lung cancer

To establish physiological significance for DPP3 in controlling KEAP1–NRF2 signaling, we evaluated DPP3 mRNA abundance and gene alterations in squamous cell lung carcinoma, using data from the TCGA consortium (15). First, we found that DPP3 mRNA expression is increased in lung SQCC as compared...
to matched normal tissue (Fig. 7A). Of the 4 established lung SQCC subtypes, DPP3 expression is highest in primitive-type tumors (Fig. 7A and Supplementary Fig. S2; ref. 34). Second, DPP3 genomic copy number and mRNA expression positively correlated, suggesting that DPP3 gene amplification may drive DPP3 overexpression in lung SQCC (Fig. 7B). Third, when segregated by genotype, DPP3 mRNA levels were higher in NRF2 WT lung SQCC as compared to tumors with mutated NRF2, which is consistent the proposed DPP3-competition model (Fig. 7C). Surprisingly, DPP3 mRNA abundance was found to be increased in KEAP1 mutant tumors as compared to KEAP1 WT tumors (Fig. 7D). This cooccurrence might be explained if the mutations in KEAP1 are hypomorphic, resulting in a partially compromised ability to suppress NRF2. If so, the presence of DPP3 may further drive NRF2 activity. To test this hypothesis, we cloned and expressed 5 distinct KEAP1 mutations from the TCGA lung SQCC dataset and evaluated their impact on NRF2 function. In both HEK293T cells and Keap1−/− mouse embryo fibroblasts, all 5 KEAP1 mutants displayed reduced but not absent activity in suppressing NRF2, thus supporting the notion that these somatic mutations are hypomorphic (Fig. 7E and Supplementary Fig. S3). Impressively, overexpression of DPP3 further activated NRF2 in the presence of all 5 KEAP1 hypomorphs (Fig. 7F). Importantly, the KEAP1 somatic mutants analyzed maintained association with both DPP3 and NRF2 (Supplementary Fig. S3). These data support a model wherein somatic mutation of KEAP1 partially impairs its ability to suppress NRF2, and the presence of "ETGE"-containing proteins such as DPP3 may further drive pathway activity in KEAP1 mutant tumors.

Finally, we tested whether DPP3 expression associated with NRF2 transcriptional activity across the lung SQCC cohort, as defined by the expression of a gene set signature consisting of 15 NRF2 target genes (3). DPP3 expression and the NRF2 signature score strongly associated (Fig. 7H). Together, these data suggest that through competitive binding to KEAP1, DPP3 genomic amplification and overexpression may promote NRF2 activity in squamous cell carcinoma of the lung.
Discussion

Aberrant KEAP1/NRF2 signaling has emerged as a critical regulatory pathway in a multitude of disease pathologies, most notably cancer. Although substantial progress has been made to define how reactive cysteines within KEAP1 govern its ability to ubiquitinate NRF2, the role of proteins peripheral to the KEAP1/NRF2/CUL3 core complex has only just begun to be explored. Recent studies have revealed 4 proteins that bind KEAP1 or NRF2 and ultimately inhibit NRF2 ubiquitination. Of these, WTX and PALB2 employ an ETGE motif to directly bind KEAP1, thus displacing and stabilizing NRF2. Given these discoveries and the likelihood that KEAP1-associated proteins contribute to NRF2 perturbation in human disease, particularly when genomic alterations within KEAP1 and NRF2 are lacking, we sought to establish the ETGE motif as a defining characteristic in KEAP1-associated proteins that functionally control NRF2 stability.

We found that the ETGE motif defines the most frequently observed 4 amino acid sequence within the KEAP1 protein interaction network (Supplementary Table S2; Fisher exact test, 1-tail, \(P = 5.8e^{-13} \)). Of 13 ETGE-containing proteins identified, we tested 7 and found that all required the ETGE motif to bind KEAP1 (Fig. 2E). Aside from this ETGE-dependent KEAP1 binding however, we noted very few similarities. For example, with the exception of WTX, DPP3, and PALB2, none of the proteins have been previously reported to contribute or respond to oxidative stress. In addition, functional annotations for identified proteins are surprisingly diversified: DNA replication and licensing (MCM3, MCMBP), cytoskeletal dynamics (SLK, WDR1), transcription (TSC22D4), and apoptosis (SLK; ref. 35–45). Within the context of our data, these observations suggest that each ETGE protein may function to control KEAP1 activity or be controlled by KEAP1 in a context-dependent fashion.

Because it robustly activates NRF2-mediated transcription (Fig. 6A), binds KEAP1 with near exclusivity (Fig. 3A and B), and has established catalytic activity, we chose to focus our mechanistic studies on DPP3. Although DPP3 possesses exopeptidase activity in vitro (33, 46), we were unable to reveal a role for its catalytic activity in either contributing to the KEAP1 interaction (Figs. 3D and 4C) or regulating NRF2-mediated transcription (Fig. 3I). That said, our studies did not examine the temporal effects of DPP3 expression on NRF2 activity, but rather assessed pathway activity at steady state. Focused studies are needed to determine whether DPP3 catalytic activity functions to control KEAP1 and NRF2 dynamics, as...
well as pathway activity in vivo. Given the pressing need of identifying new drug targets within the KEAP1–NRF2 pathway, the possibility of targeting DPP3 catalytic function to control KEAP1–NRF2 remains an important opportunity.

The ETGE motif of DPP3 resides in a flexible loop on the surface of the protein and adopts a similar conformation to the NRF2 ETGE peptide when bound to KEAP1 (Fig. 4F and G). Loss of this motif, either through deletion or point mutation, abrogates the KEAP1–DPP3 protein interaction (Fig. 4), perturbs the interaction between NRF2 and KEAP1 (Fig. 5), as well as alters NRF2 ubiquitination (Fig. 5). We interpret these data to support a model wherein DPP3 competes the low-affinity DLG motif of NRF2 off of the KEAP1 KELCH domain, resulting in a complex of KEAP1, DPP3, and NRF2. Additional experiments are needed to determine protein stoichiometry within complexes containing KEAP1, NRF2, and DPP3. These experiments will reveal whether competitors such as DPP3 specifically compete off the DLG of NRF2, as opposed to the ETGE motif based on the relative affinities of the DLG and ETGE motifs, competition with the DLG motif of NRF2 is most probable (10, 11).

In cancer, overexpression of an ETGE-containing protein may promote NRF2 activity in the absence of inactivating KEAP1 mutations or activating NRF2 mutations. Indeed, high NRF2 activity in tumors lacking KEAP1 or NRF2 mutation has been reported in ovarian cancer, sarcoma, and squamous cell lung cancer (5, 17, 47). After defining the ETGE-containing proteins within the KEAP1 protein interaction network (Fig. 1), we surveyed their expression and DNA copy number across tumor samples taken from the TCGA SQCC lung cohort. DPP3 showed copy number gains and mRNA overexpression, and importantly both of which positively correlated with NRF2 activity (Fig. 7). Whether genomic amplification of DPP3 constitutes a "driver" event in cancer remains an important question for future research. Interestingly, 2 studies have showed DPP3 overexpression in ovarian cancer. Given our data in lung SQCC, DPP3 expression may similarly be driven by genomic amplification in ovarian carcinoma, possibly functioning as a NRF2 agonist (48, 49).

Our cancer genomic analyses and functional annotation of cancer-derived mutations in KEAP1 suggest that some KEAP1 somatic mutations are hypomorphic, resulting in partial NRF2 activation. This contrasts NRF2 mutation, which we believe yields a maximally activated pathway, one insensitive to KEAP1 modifiers such as DPP3. This hypothesis is supported by the following: (1) DPP3 genomic amplification and mRNA overexpression was largely restricted to NRF2 WT tumors, (2) DPP3 overexpression positively associated with KEAP1 mutant tumors, (3) DPP3 overexpression in the presence of mutant KEAP1 further activated NRF2 signaling, and (4) as a tumor suppressor frequently targeted in cancer, KEAP1 is somewhat unique in that it is rarely deleted through homozygotic loss. Therefore, from a therapeutic and prognostic perspective, KEAP1 mutant tumors are not equivalent to NRF2 mutants. Future studies are needed to challenge this model. For example, does forced DPP3 expression drive NRF2 activity in mouse models of lung cancer, and would synergy be seen between DPP3 expression and KEAP1 mutation in vivo? Given that multiple different cancer types have recently been found to exhibit constitutive NRF2 activation—some of which lack NRF2 and KEAP1 mutations—our data collectively support a model where the expression of ETGE-containing proteins drive NRF2-mediated signaling via a competitive binding mechanism.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: B.E. Hast, D.N. Hayes, M.B. Major
Development of methodology: B.E. Hast, D.N. Hayes, M.B. Major
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): B.E. Hast, P.F. Siesser, F. Yan, D.N. Hayes, M.B. Major
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): B.E. Hast, D. Goldfarb, M.A. Hast, D.N. Hayes, M.B. Major
Writing, review, and/or revision of the manuscript: B.E. Hast, D. Goldfarb, D.N. Hayes, M.B. Major
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): B.E. Hast, D. Goldfarb, K.M. Mulvany, D.N. Hayes, M.B. Major
Study supervision: B.E. Hast, D.N. Hayes, M.B. Major

Acknowledgments
The authors thank members of the Major lab for critical review of the manuscript.

Grant Support
M.B. Major is supported by the NIH through the NIH Director’s New Innovator Award, 1-DP2-OD007149-01, and a Scholar Award from the Sidney Kimmel Cancer Foundation. D.N. Hayes is supported by grants from The Cancer Genome Atlas (NIH U24 CA143848 and NIH U24 CA143848-02S1). D.N. Hayes and M.B. Major are additionally supported by a grant from the Greensboro Golfers Against Cancer.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received November 30, 2012; revised January 23, 2013; accepted January 30, 2013; published OnlineFirst February 4, 2013.

References

Proteomic Analysis of Ubiquitin Ligase KEAP1 Reveals Associated Proteins That Inhibit NRF2 Ubiquitination

Bridgid E. Hast, Dennis Goldfarb, Kathleen M. Mulvaney, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-12-4400

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2013/02/04/0008-5472.CAN-12-4400.DC1

Cited articles
This article cites 49 articles, 22 of which you can access for free at:
http://cancerres.aacrjournals.org/content/73/7/2199.full#ref-list-1

Citing articles
This article has been cited by 14 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/73/7/2199.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.