Highlights from Recent Cancer Literature

Tumor-Specific Cytotoxic T Cells Are Crucial for Efficacy of Immunomodulatory Antibodies in Patients with Lung Cancer
Joachim G. Aerts and Joost P. Hegmans

Understanding Phenotypic Variation in Rodent Models with Germline Apc Mutations
Maged Zeineldin and Kristi L. Neufeld

Siah: A Promising Anticancer Target
Christina S.F. Wong and Andreas Möller

The Model Muddle: In Search of Tumor Growth Laws
Philip Gerlee

Challenges and Key Considerations of the Enhanced Permeability and Retention Effect for Nanomedicine Drug Delivery in Oncology

Higher Frequencies of GARP+CTLA-4+Foxp3+ T Regulatory Cells and Myeloid-Derived Suppressor Cells in Hepatocellular Carcinoma Patients Are Associated with Impaired T-Cell Functionality
Suresh Kalathil, Amit A. Lugade, Austin Miller, Renuka Iyer, and Yasmin Thanavala

Automated Tracking of Nanoparticle-labeled Melanoma Cells Improves the Predictive Power of a Brain Metastasis Model

Automated Tracking of Nanoparticle-labeled Melanoma Cells Improves the Predictive Power of a Brain Metastasis Model

EGFR-TKI Resistance Due to BIM Polymorphism Can Be Circumvented in Combination with HDAC Inhibition
Takayuki Nakagawa, Shintaro Takeuchi, Tadaaki Yamada, Hiromichi Ebi, Takako Sano, Shigeki Nanjo, Daisuke Ishikawa, Mitsuo Satoh, Yoshinori Hasegawa, Yoshitaka Sekido, and Seiji Yano

Precis: This study unravels the mechanistic basis for EGFR inhibitor resistance in patients who harbor a common BIM polymorphism that prevents BIM induction needed for a robust drug response and shows how to restore sensitivity by epigenetic reprogramming with an HDAC inhibitor.

Precis: This seminal study shows how the acquisition of EMT and autophagy in cancers promotes their ability to escape T-cell immunity, revealing new mechanistic perspectives on how immune escape and metastatic progression are linked.

Precis: This study describes a model that can improve upon the predictive elements derived from preclinical studies of brain metastasis, perhaps ultimately helping reduce the number of clinical trials that fail to show patient benefit.
Selective Blockade of Matrix Metalloprotease-14 with a Monoclonal Antibody Abrogates Invasion, Angiogenesis, and Tumor Growth in Ovarian Cancer

Rajani Kaimal, Raid Aljumaily, Sarah L. Tressel, Rutika V. Pradhan, Lidija Covic, Athan Kuliopulos, Corrine Zarwan, Young B. Kim, Sheida Sharifi, and Anika Agarwal

Précis: Targeting MMP-14 with a monoclonal antibody may be important for antiangiogenic therapy not only in ovarian cancer but also in other solid tumors.

Interleukin 21–Induced Granzyme B–Expressing B Cells Infiltrate Tumors and Regulate T Cells

Stefanie Lindner, Karen Dahlke, Kai Sontheimer, Magdalena Hagn, Christof Kaltenmeier, Thomas F.E. Barth, Thamara Beyer, Frank Reister, Dorit Fabricius, Ramin Lotfi, Oleg Lanov, G. Ulrich Nienhaus, Thomas Simmet, Rolf Kreienberg, Peter Moller, Hubert Schrezenmeier, and Bernd Jahrsdörf er

Précis: This potentially seminal study establishes the existence and control of human B regulatory cells in the tumor microenvironment, which under the control of IL-21 may contribute significantly to Treg-dependent mechanisms of local immune escape.

Chemotherapy Alters Monocyte Differentiation to Favor Generation of Cancer-Supporting M2 Macrophages in the Tumor Microenvironment

Précis: Chemotherapy-induced activation of the NFκB pathway reinforces immune suppression in tumor microenvironments where prostaglandin E2 and IL-6 are being produced, suggesting combination strategies with inhibitors of COX-2 or IL-6 signaling to improve chemotherapeutic efficacy.

Chemotherapy Acts as an Adjuvant to Convert the Tumor Microenvironment into a Highly Permissive State for Vaccination-Induced Antitumor Immunity

Tae Heung Kang, Chih-Jen Wang, Crystal D. Lin, Yi-Hsin Tseng, Chung-Ying Tsai, Sheng-Yen Lin, Yu-Ting Hung, Chih-Jen Wang, Crystal D. Lin, and Kwang-Huei Lin

Précis: This study identifies Src as the critical oncogenic driver and potential druggable target of juvenile myelomonocytic leukemia, an aggressive myeloid malignancy without an effective cure.
Endocrine Fibroblast Growth Factor

FGF19 Promotes Prostate Cancer Progression

Shu Feng, Olga Dakhova, Chad J. Creighton, and Michael Ittmann

Précis: Expression of an endocrine FGF in prostate cancers is found to promote tumor progression, suggesting it may offer a novel therapeutic target.

CYP24A1 and CYP27B1 Polymorphisms Modulate Vitamin D Metabolism in Colon Cancer Cells

Elizabeth T. Jacobs, Chad Van Pelt, Ryan E. Forster, Wasiq Zaidi, Elizabeth A. Hibler, Michael A. Galligan, Mark R. Haussler, and Peter W. Jurutka

Précis: These results illustrate how naturally occurring genetic variations in vitamin D metabolic pathways may influence the risk of colon cancer.

Characterization of Torin2, an ATP-Competitive Inhibitor of mTOR, ATM, and ATR

Précis: An mTOR inhibitor with superior pharmacologic properties in vivo is found to inhibit PI3K family kinases involved in DNA damage signaling and to cooperate strongly with MEK kinase inhibition in killing mouse and human cancer cells.

MDM2 Small-Molecule Antagonist RG7112 Activates p53 Signaling and Regresses Human Tumors in Preclinical Cancer Models

Christian Tovar, Bradford Graves, Kathrym Packman, Zoran Filipovic, Brian Higgins Minguan Xia, Christine Tardell, Rosario Garrido, Edmund Lee, Kenneth Kolinsky, Kwong-Him To, Michael Lim, Frank Podlaski, Peter Woychik, Binh Vu, and Lyubomir T. Vassilev

Précis: The first p53 activator to reach clinical trials is shown in preclinical testing to shrink human tumors, offering a proof-of-concept for eradication of tumors with wild-type forms of this tumor suppressor.

Ex Vivo Expansion of Highly Cytotoxic Human NK Cells by Cocultivation with Irradiated Tumor Cells for Adoptive Immunotherapy

Seon Ah Lim, Tae-Jin Kim, Jung Eun Lee, Chung Hee Sonn, Kwanghee Kim, Jiyoung Kim, Jong Gwon Choi, Il-Kyu Choi, Chae-Ok Yun, Jae-Hong Kim, Cassian Yee, Vinay Kumar, and Kyung-Mi Lee

Précis: This article shows how to activate and expand human NK cells, providing the basis for a straightforward strategy to expand a highly cytotoxic effector cell population that may help treat advanced cancers refractory to conventional therapy.

Ex Vivo Activation of CD56⁺ Immune Cells That Eradicate Neuroblastoma

Piya Rujkijyanont, Wing Keung Chan, Paul W. Eldridge, Timothy Lockey, Martha Holladay, Barbara Rooney, Andrew M. Davidoff, Wing Leung, and Queenie Yong

Précis: These results show a clinically expedient strategy to generate activated NK cells that are highly cytotoxic to neuroblastoma with minimal risk of GvHD.

scFv-Based "Grababody" as a General Strategy to Improve Recruitment of Immune Effector Cells to Antibody-Targeted Tumors

Zheng Cai, Ting Fu, Yasuhiro Nagai, Lian Lam, Marla Yee, Zhiqiang Zhu, and Hongtao Zhang

Précis: A novel recombinant molecule combining the specificity of an antibody variable chain with the IgG binding domain facilitates the ability to enable tumor specific killing by endogenous immune effector cells.

AMPK Activation by Oncogenesis Is Required to Maintain Cancer Cell Proliferation in Astrocytic Tumors

Marcos Rios, Marc Foretz, Benoit Viollet, Angel Prieto, Maximo Fraga, Jose A. Costoya, and Rosa Señarís

Précis: Whether AMPK is essential or not for cancer cell proliferation has been somewhat controversial, but this preclinical study offers a clear rationale for its further exploration as a therapeutic target in brain cancers.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Précis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2639</td>
<td>Rhythmic Control of the ARF-MDM2 Pathway by ATF4 Underlies Circadian Accumulation of p53 in Malignant Cells</td>
<td>Michiko Horiguchi, Satoru Koyanagi, Ahmed M. Hamdan, Keisuke Kakimoto, Naoya Matsunaga, Chikama Yamashita, and Shigehiro Ohdo</td>
<td>Précis: Circadian rhythms that determine the accumulation of p53 in malignant cells can result, with potential implications for increasing therapeutic efficacy by optimizing the time of drug administration in patients.</td>
</tr>
<tr>
<td>2650</td>
<td>Menin Epigenetically Represses Hedgehog Signaling in MEN1 Tumor Syndrome</td>
<td>Buddha Gurung, Zijie Feng, Daniel V. Iwamoto, Austin Thiel, Guanghui Jin, Chen-Min Fan, Jessica M.Y. Ng, Tom Curran, and Xianxin Hua</td>
<td>Précis: Mechanistic results suggest a way to treat parathyroid, pituitary, pancreatic, and other tumors that characterize the MEN1 syndrome, offering a unified treatment approach.</td>
</tr>
<tr>
<td>2659</td>
<td>Hepatocyte Growth Factor Activator Inhibitor Type 1 Is a Suppressor of Intestinal Tumorigenesis</td>
<td>Shinri Hoshiko, Makiko Kawaguchi, Tsunoshi Fukushima, Yukihiro Haruyama, Kenji Yorita, Hiroyuki Tanaka, Motoharu Seiki, Haruhiko Inatsu, Kazuo Kitamura, and Hiroaki Kataoka</td>
<td>Précis: A membrane-associated tumor suppressor in the intestinal tract is defined that may stimulate novel therapeutic approaches to prevent progression of benign colon tumors.</td>
</tr>
<tr>
<td>2671</td>
<td>Inherited Variation in miR-290 Expression Suppresses Breast Cancer Progression by Targeting the Metastasis Susceptibility Gene Arid4b</td>
<td>Natalie Goldberger, Renard C. Walker, Chang Hee Kim, Scott Winter, and Kent W. Hunter</td>
<td>Précis: This is the first study to show that inherited differences in microRNA expression can modify susceptibility to metastatic progression in breast cancer.</td>
</tr>
<tr>
<td>2682</td>
<td>CD44-Positive Cancer Stem Cells Expressing Cellular Prion Protein Contribute to Metastatic Capacity in Colorectal Cancer</td>
<td>Lei Du, Guanhuao Rao, Hongyi Wang, Baowei Li, Weili Tian, Jiantao Cui, Leya He, Brian Laffin, Xiuyun Tian, Chunyi Hao, Hongmin Liu, Xin Sun, Yushan Zhu, Dean G. Tang, Maryam Mehrpour, Youyong Lu, and Quan Chen</td>
<td>Précis: Prions may be functional markers of a highly metastatic subpopulation of cancer stem cells in colorectal cancer, where they might be targeted to treat metastatic disease.</td>
</tr>
<tr>
<td>2695</td>
<td>Regulation of Lung Cancer Metastasis by Klf4-Numb–like Signaling</td>
<td>Valentina Vaira, Alice Faversani, Nina M. Martin, David S. Garlick, Stefano Ferrero, Mario Nosotti, Joseph L. Kissil, Silvano Bosari, and Dario C. Altieri</td>
<td>Précis: These findings uncover a novel signaling network centered on the polarity protein Numb-like, which dually promotes abnormal cell motility needed for metastasis along with the persistence of cancer-initiating, stem-like cells that reduce overall survival in lung cancer.</td>
</tr>
</tbody>
</table>

ABOUT THE COVER

Cancer stem cells are implicated in tumor metastasis although the exact mechanisms remain poorly understood. The expression of cellular prion protein (PrPc), a highly conserved glycoprotein that has the same protein sequence as the scrapie prion protein, is positively correlated with an increased risk of metastasis in colorectal cancer. By double immunofluorescence staining of CD44 (green) and PrPc (red), CD44⁺PrPc⁺ cells were detected in the cryosections of colorectal cancers. PrPc⁺CD44⁺ colorectal cancer stem cells displayed high liver metastatic capability. For details, see article by Du and colleagues on page 2682.