Highlights from Recent Cancer Literature

Tumor-Specific Cytotoxic T Cells Are Crucial for Efficacy of Immunomodulatory Antibodies in Patients with Lung Cancer
Joachim G. Aerts and Joost P. Hegmans

Understanding Phenotypic Variation in Rodent Models with Germline Apc Mutations
Maged Zeineldin and Kristi L. Neufeld

Siah: A Promising Anticancer Target
Christina S.F. Wong and Andreas Müller

The Model Muddle: In Search of Tumor Growth Laws
Philip Gerlee

Challenges and Key Considerations of the Enhanced Permeability and Retention Effect for Nanomedicine Drug Delivery in Oncology

Epithelial-to-Mesenchymal Transition and Autophagy Induction in Breast Carcinoma Promote Escape from T-cell–Mediated Lysis
Intissar Akalay, Bassam Janji, Meriem Hasmim, Muhammad Zaeem Noman, Fabrice André, Patricia De Cremoux, Philippe Bertheau, Cécile Badoual, Philippe Vielh, Annette K. Larsen, Michèle Sabbah, Tuan Zea Tan, Joann Herr Keira, Nicole Tsang Ying Hung, Jean Paul Thiery, Fathia Mami-Chouaib, and Salem Chouaib

EGFR-TKI Resistance Due to BIM Polymorphism Can Be Circumvented in Combination with HDAC Inhibition
Takayuki Nakagawa, Shini Takeuchi, Tadaaki Yamada, Hiromichi Ebi, Takako Sano, Shigeki Nanjo, Daisuke Ishikawa, Mitsuo Satoh, Yoshinori Hasegawa, Yoshitaka Sekido, and Seiji Yano

Higher Frequencies of GARP+CTLA-4+Foxp3+ T Regulatory Cells and Myeloid-Derived Suppressor Cells in Hepatocellular Carcinoma Patients Are Associated with Impaired T-Cell Functionality
Suresh Kalathil, Amit A. Lugade, Austin Miller, Renuka Iyer, and Yasmin Thanavala

Automated Tracking of Nanoparticle-labeled Melanoma Cells Improves the Predictive Power of a Brain Metastasis Model
Terje Sundstrøm, Inderjit Daphu, Ingvild Wendelbo, Erlend Hodneland, Arvid Lundervold, Heike Immervoll, Kai Ove Skafnesmo, Michal Babic, Pavla Jendelova, Eva Sykova, Morten Lund-Johansen, Rolf Bjerkvig, and Frits Thorsen

Précis: This seminal study shows how the acquisition of EMT and autophagy in cancers promotes their ability to escape T-cell immunity, revealing new mechanistic perspectives on how immune escape and metastatic progression are linked.
Microenvironment and Immunology

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2457</td>
<td>Selective Blockade of Matrix Metalloprotease-14 with a Monoclonal Antibody Abrogates Invasion, Angiogenesis, and Tumor Growth in Ovarian Cancer</td>
<td>Rajani Kaimal, Raid Aljumaily, Sarah L. Tressel, Rutika V. Pradhan, Lidiya Covic, Athan Kuliopulos, Corrine Zarwan, Young B. Kim, Sheida Sharifi, and Anika Agarwal</td>
</tr>
<tr>
<td>2468</td>
<td>Interleukin 21–Induced Granzyme B–Expressing B Cells Infiltrate Tumors and Regulate T Cells</td>
<td>Stefanie Lindner, Karen Dahlke, Kai Sontheimer, Magdalena Hagn, Christof Kaltenmeier, Thomas P.E. Barth, Thamara E.oller, Frank Reister, Dorit Fabricius, Ramin Lotfi, Oleg Lunau, G. Ulrich Niernhaus, Thomas Simmet, Rolf Kreienberg, Peter Moller, Hubert Schrezenmeier, and Bernd Jahrsdörfer</td>
</tr>
<tr>
<td>2493</td>
<td>Chemotherapy Acts as an Adjuvant to Convert the Tumor Microenvironment into a Highly Permissive State for Vaccination-Induced Antitumor Immunity</td>
<td>Tae Heung Kang, Chih-Ping Mao, Sung Yong Lee, Alexander Chen, Ji-Hyun Lee, Jae Woo Kim, Ronald D. Alvarez, Richard B.S. Roden, Drew Pardoll, Chien-Fu Hung, and T.-C. Wu</td>
</tr>
</tbody>
</table>

Molecular and Cellular Pathobiology

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2505</td>
<td>Thyroid Hormone Regulation of miR-21 Enhances Migration and Invasion of Hepatoma</td>
<td>Ya-Hui Huang, Yang-Hsiang Lin, Hsiang-Cheng Chi, Chen-Hsin Liao, Chia-Jung Liao, Sheng-Ming Wu, Cheng-Yi Chen, Yi-Hsin Tseng, Chung-Ying Tsai, Sheng-Yen Lin, Yu-Ting Hung, Chih-Jen Wang, Crystal D. Lin, and Kwang-Huei Lin</td>
</tr>
<tr>
<td>2518</td>
<td>SRC Signaling Is Crucial in the Growth of Synovial Sarcoma Cells</td>
<td>Sebastian Michels, Marcel Trautmann, Elisabeth Sievers, Dagmar Kindler, Sebastian Huss, Marcus Renner, Nicolaus Friedrichs, Jutta Kirfel, Susanne Steiner, Elnar Endl, Peter Wurst, Lukas Heukamp, Roland Penzel, Olle Larsson, Akira Kawai, Shinya Tanaka, Hiroshi Sonobe, Peter Schirmacher, Gunhild Mecht舍reimer, Eva Wardelmann, Reinhard Büttner, and Wolfgang Hartmann</td>
</tr>
<tr>
<td>2529</td>
<td>PARI Overexpression Promotes Genomic Instability and Pancreatic Tumorigenesis</td>
<td>Kevin W. O’Connor, Donnphat Dejsuphong, Eunmi Park, Claudia M. Nicolae, Alec C. Kimmelman, Alan D. D'Andrea, and George-Lucian Moldovan</td>
</tr>
<tr>
<td>2540</td>
<td>Inhibition of SRC Corrects GM-CSF Hypersensitivity That Underlies Juvenile Myelomonocytic Leukemia</td>
<td>Severa Bunda, Michelle W. Kang, Stephanie S. Sybingco, Julie Weng, Helene Favre, Danielle H. Shin, Meredith S. Irwin, Mignon L. Loh, and Michael Ohl</td>
</tr>
</tbody>
</table>

Downloaded from cancerres.aacrjournals.org on June 4, 2017. © 2013 American Association for Cancer Research.
Endocrine Fibroblast Growth Factor FGF19 Promotes Prostate Cancer Progression
Shu Feng, Olga Dakhova, Chad J. Creighton, and Michael Ittmann

Précis: Expression of an endocrine FGF in prostate cancers is found to promote tumor progression, suggesting it may offer a novel therapeutic target.

CYP24A1 and CYP27B1 Polymorphisms Modulate Vitamin D Metabolism in Colon Cancer Cells
Elizabeth T. Jacobs, Chad Van Pelt, Ryan E. Forster, Wasiq Zaidi, Elizabeth A. Hibler, Michael A. Galligan, Mark R. Haussler, and Peter W. Jurutka

Précis: These results illustrate how naturally occurring genetic variations in vitamin D metabolic pathways may influence the risk of colon cancer.

Characterization of Torin2, an ATP-Competitive Inhibitor of mTOR, ATM, and ATR
Qingsong Liu, Chunxiao Xu, Swapriya Kirubakaran, Xin Zhang, Wooyoung Hur, Yan Liu, Nicholas P. Kwiakowski, Jinhua Wang, Kenneth D. Westover, Peng Gao, Dalia Erkan, Mario Niepel, Carson C. Thoreen, Seong A. Kang, Matthew P. Patricelli, and Nathanael S. Gray

Précis: An mTOR inhibitor with superior pharmacologic properties in vivo is found to inhibit PI3K family kinases involved in DNA damage signaling and to cooperate strongly with MEK kinase inhibition in killing mouse and human cancer cells.

MDM2 Small-Molecule Antagonist RG7112 Activates p53 Signaling and Regresses Human Tumors in Preclinical Cancer Models

Précis: The first p53 activator to reach clinical trials is shown in preclinical testing to shrink human tumors, offering a proof-of-concept for eradication of tumors with wild-type forms of this tumor suppressor.

Ex Vivo Expansion of Highly Cytotoxic Human NK Cells by Cocultivation with Irradiated Tumor Cells for Adoptive Immunotherapy
Seon Ah Lim, Tae-Jin Kim, Jung Eun Lee, Chong Hee Sonn, Kwanghee Kim, Jiyoung Kim, Jong Gwon Choi, Il-Kyu Choi, Chae-Ok Yun, Jae-Hong Kim, Cassian Yee, Vinay Kumar, and Kyung-Mi Lee

Précis: This article shows how to activate and expand human NK cells, providing the basis for a straightforward strategy to expand a highly cytotoxic effector cell population that may help treat advanced cancers refractory to conventional therapy.

Ex Vivo Activation of CD56+ Immune Cells That Eradicate Neuroblastoma
Piya Rujkijyanont, Wing Keung Chan, Paul W. Eldridge, Timothy Lockey, Martha Holladay, Barbara Rooney, Andrew M. Davidoff, Wing Keung, and Queenie Yong

Précis: These results show a clinically expedient strategy to generate activated NK cells that are highly cytotoxic to neuroblastoma with minimal risk of GvHD.

scFv-Based "Grababody'' as a General Strategy to Improve Recruitment of Immune Effector Cells to Antibody-Targeted Tumors
Zheng Cai, Ting Fu, Yasuhiro Nagai, Lian Lam, Marla Yee, Zhiqiang Zhu, and Hongtao Zhang

Précis: A novel recombinant molecule combining the specificity of an antibody variable chain with the IgG binding domain facilitates the ability to enable tumor specific killing by endogenous immune effector cells.

AMPK Activation by Oncogenesis Is Required to Maintain Cancer Cell Proliferation in Astrocytic Tumors
Marcos Rios, Marc Foretz, Benoit Viollet, Maximo Fraga, Jose A. Costoya, and Rosa Señarís

Précis: Whether AMPK is essential or not for cancer cell proliferation has been somewhat controversial, but this preclinical study offers a clear rationale for its further exploration as a therapeutic target in brain cancers.
Rhythmic Control of the ARF-MDM2 Pathway by ATF4 Underlies Circadian Accumulation of p53 in Malignant Cells
Michiko Horiguchi, Satoru Koyanagi, Ahmed M. Hamdan, Keisuke Kakimoto, Naoya Matsunaga, Chikamasa Yamashita, and Shigehiro Ohdo

Précis: Circadian rhythms that determine the accumulation of p53 in malignant cells explain how temporal changes in their chemosensitivity can result, with potential implications for increasing therapeutic efficacy by optimizing the time of drug administration in patients.

Menin Epigenetically Represses Hedgehog Signaling in MEN1 Tumor Syndrome
Buddha Gurung, Zijie Feng, Daniel V. Iwamoto, Austin Thiel, Guanghui Jin, Chen-Min Fan, Jessica M.Y. Ng, Tom Curran, and Xianxin Hua

Précis: Mechanistic results suggest a way to treat parathyroid, pituitary, pancreatic, and other tumors that characterize the MEN1 syndrome, offering a unified treatment approach.

Hepatocyte Growth Factor Activator Inhibitor Type 1 Is a Suppressor of Intestinal Tumorigenesis
Shinri Hoshiko, Makiko Kawaguchi, Tsunyoshi Fukushima, Yukihito Haruyama, Kenji Yorita, Hiroyuki Tanaka, Motoharu Seiki, Haruhiko Inatsu, Kazuo Kitamura, and Hiroaki Kataoka

Précis: A membrane-associated tumor suppressor in the intestinal tract is defined that may stimulate novel therapeutic approaches to prevent progression of benign colon tumors.

Inherited Variation in miR-290 Expression Suppresses Breast Cancer Progression by Targeting the Metastasis Susceptibility Gene Arid4b
Natalie Goldberger, Renard C. Walker, Chang Hee Kim, Scott Winter, and Kent W. Hunter

Précis: This is the first study to show that inherited differences in microRNA expression can modify susceptibility to metastatic progression in breast cancer.

CD44-Positive Cancer Stem Cells Expressing Cellular Prion Protein Contribute to Metastatic Capacity in Colorectal Cancer
Lei Du, Guanhua Rao, Hongyi Wang, Baowei Li, Weili Tian, Jiantao Cui, Leya He, Brian Laffin, Xiuyun Tian, Chunyi Hao, Hongmin Liu, Xin Sun, Yushan Zhu, Dean G. Tang, Maryam Mehrpour, Youyong Lu, and Quan Chen

Précis: Prions may be functional markers of a highly metastatic subpopulation of cancer stem cells in colorectal cancer, where they might be targeted to treat metastatic disease.

Regulation of Lung Cancer Metastasis by Klf4-Numb-like Signaling
Valentina Vaira, Alice Faversani, Nina M. Martin, David S. Garlick, Stefano Ferrero, Mario Nosotti, Joseph L. Kissil, Silvano Bosari, and Dario C. Altieri

Précis: These findings uncover a novel signaling network centered on the polarity protein Numb-like, which dually promotes abnormal cell motility needed for metastasis along with the persistence of cancer-initiating, stem-like cells that reduce overall survival in lung cancer.

ABOUT THE COVER
Cancer stem cells are implicated in tumor metastasis although the exact mechanisms remain poorly understood. The expression of cellular prion protein (PrPc), a highly conserved glycoprotein that has the same protein sequence as the scrapie prion protein, is positively correlated with an increased risk of metastasis in colorectal cancer. By double immunofluorescence staining of CD44 (green) and PrPc (red), CD44⁺PrPc⁺ cells were detected in the cryosections of colorectal cancers. PrPc⁺CD44⁺ colorectal cancer stem cells displayed high liver metastatic capability. For details, see article by Du and colleagues on page 2682.
Cancer Research

73 (8)

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/73/8

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.