Understanding Phenotypic Variation in Rodent Models with Germline Apc Mutations

Maged Zeineldin and Kristi L. Neufeld

Abstract

Adenomatous polyposis coli (APC) is best known for its crucial role in colorectal cancer suppression. Rodent models with various Apc mutations have enabled experimental validation of different Apc functions in tumors and normal tissues. Since the development of the first mouse model with a germline Apc mutation in the early 1990s, 20 other Apc mouse and rat models have been generated. This article compares and contrasts currently available Apc rodent models with particular emphasis on providing potential explanations for their reported variation in three areas: (i) intestinal polyp multiplicity, (ii) intestinal polyp distribution, and (iii) extraintestinal phenotypes.

Introduction

Tumor suppressor adenomatous polyposis coli (APC) is critical for maintaining cellular homeostasis in the intestine (1, 2). APC is a large (2,843 amino acids), multidomain protein that has been implicated in many cellular functions including cellular proliferation, differentiation, cytoskeleton regulation, migration, and apoptosis (3). Mechanistically, APC is best known for its ability to antagonize Wnt signaling by targeting the oncoprotein β-catenin for proteasomal degradation (4).

Acquiring a somatic APC mutation is an early, if not initiating, event in the great majority of colorectal tumors (5). Inheriting a germline APC mutation results in the development of hundreds to thousands of colonic polyps, a condition termed familial adenomatous polyposis (FAP). These precancerous polyps are thought to initiate following a somatic mutation in the wild-type APC allele (6, 7). To avoid the progression of these polyps into invasive carcinoma, prophylactic colon removal is recommended for FAP patients (8). There are no reports of humans with germline mutation of both APC alleles, consistent with early developmental lethality associated with complete loss of APC function (9–11). Germline and somatic APC mutations typically result in premature APC protein truncation and group between codons 1250 and 1464, a region termed the "mutation cluster region" (MCR; ref. 12).

A meta-analysis of genotype–phenotype correlation in patients with FAP showed that germline mutations in the MCR result in the most severe intestinal polyposis phenotype, with up to 5,000 polyps (13). Mutations on either side of the MCR are associated with an intermediate intestinal polyposis phenotype, whereas mutations that result in a truncation in APC after amino acid (a.a.) 1595 or before a.a. 157 are associated with an attenuated phenotype (AFAP), characterized by development of only a few polyps (13). Complete deletion of APC has been reported only rarely and results in an intermediate phenotype (14, 15).

More than two thirds of patients with FAP also have extracolonic manifestations (13). Chronic hypertrophy of retinal pigment epithelium (CHRPE) is the most frequent phenotype, associated with APC truncation between a.a. 311 and 1446. Desmoid tumors, on the other hand, are associated with APC truncations 3' to the MCR, after a.a. 1400. Duodenal and gastric tumors have been associated with APC mutations in 2 different regions, downstream of codon 1395 and between codons 564 and 1465 (13). It is important to note that these genotype–phenotype correlations are not rigid or complete, suggesting roles for other genetic and environmental factors in tumor development (13, 16).

For the past two decades, rodent models have been valuable for analysis of APC functions in intestinal homeostasis and tumor suppression (17, 18). APC is well conserved between human and rodent, with 92% similarity at the amino acid level (9, 19). Furthermore, some rodent models with germline Apc mutations that result in Apc protein truncation develop intestinal polyposis similar to that seen in patients with FAP (18). A brief summary of all published rodent models with germline Apc mutations appears in Tables 1 to 3, with a schematic provided in Figure 1.

Characterization of the many available Apc mouse and rat models has aided in discovery of various pathways important in colon carcinogenesis. Apc rodent models were also useful for elucidating the effect of various environmental and genetic factors on intestinal tumorigenesis and for testing potential chemoprevention and therapeutic agents. The many positive contributions of Apc mouse models have been reviewed previously (20, 21). As with most experimental systems, studies of
the Apc models have also led to unanswered questions, particularly regarding phenotypic variation among the different models. Here, we review some of these variations, provide potential explanations, and pose challenges for future investigation.

Variation in Intestinal Polyp Multiplicity

As shown in Table 1 to 3, the average number of polyps varies greatly between different mouse models with germline Apc mutations. In addition, the number of polyps also varies in the same Apc mouse model maintained in different laboratories (17). These variations in intestinal polyp number in different models likely stem from the nature of the Apc mutations as well as environmental and genetic factors (17, 18). We propose that the number of intestinal tumors that develop in different Apc models and in the same model analyzed by different laboratories is influenced by one or more of the following factors.

Different rates and mechanisms of wild-type Apc allele loss (e.g., LOH, mutation of wild-type Apc, gene silencing)

In both patients with FAP and rodent models with germline Apc mutations, loss or inactivation of the wild-type APC/Apc allele is required for polypl formation (22, 23). The mechanism by which the second wild-type Apc allele is lost appears to depend on the Apc mouse model (24). Because this second Apc "hit" is essential for polypl initiation (10, 22, 25), the rate at which the second "hit" occurs will directly affect the number of intestinal polyps. Increasing the expected rate of these second "hits" through introduction of genomic instability, X-ray exposure, or injection with a mutagen significantly increases the number of polyps in ApcMin/+ and ApcK1638N mice (26–30). It has been suggested that certain Apc mutations might lead to chromosomal instability, which could affect the rate of wild-type Apc loss (31).

ApcK1638N/+ mice develop relatively few intestinal polyps and the second Apc "hit" is usually inactivation of the wild-type Apc allele, predicted to be a rare event (24). On the other hand, ApcMin/+ mice, in which the wild-type Apc allele is lost by means of a more frequent LOH event, develop considerably more polyps (24). Loss of the wild-type Apc allele in both ApcMin/+ and Apc1322T/+ mice, however, is reported to occur via LOH, yet these two mouse models have widely different polyp numbers (32). Although the rate and underlying mechanism of wild-type Apc allele loss might contribute to intestinal polyp numbers in Apc mouse models, it is unlikely that these are sole defining parameters.

Different rates of polyp growth due to differences in Wnt signaling

Polyps must reach a certain size to be detectable. If two polyps are initiated at the same time, a more rapidly growing polyp should be detectable earlier than a slower growing polyp. The most recognized function of Apc is to antagonize the Wnt signaling pathway through inhibition of the activity of β-catenin as a transcription cofactor (4). As Wnt signaling can drive cellular proliferation, we might expect that different Apc mutations would lead to different levels of Wnt signal activation and different corresponding changes in cellular proliferation. In patients with FAP, mutations in the MCR are associated with the most severe intestinal phenotypes, whereas mutations outside the MCR lead to reduced polyp multiplicity (13). Notably, Apc mutations 5’ and 3’ to the MCR result in higher and lower activation of Wnt signaling, respectively (33). This observation has led to the proposal that submaximal upregulation of Wnt signaling promotes more polyp growth than higher or lower elevation of Wnt signaling, the "just right" hypothesis (34, 35). Wnt signaling has been assessed in many Apc mouse models. Some models have high polyp multiplicity and show elevated Wnt signaling in these polyps (ApcMin/+; Apc1716+/+, Apc1322T+, and ApcK1638N/+; refs. 10, 34, 35), Wnt signaling is also elevated in the few polyps that develop in ApcNeoR+ and ApcNeoF+ mice (36, 37). ApcNeoR+/mNeLS mice have elevated Wnt signaling in intestinal epithelial cells (38, 39). Apc1322T+ or ApcNeoF+ embryonic stem cells also have elevated Wnt signaling (38, 39). Neither ApcNeoR+/mNeLS nor Apc1322T+ mice develop intestinal polyps (38, 39).

The "just right" hypothesis is supported by reports of increased polyp multiplicity in ApcK1638N+ and Apc1322T+ mice relative to ApcMin+ mice (34, 35). Compared with ApcMin+, Apc1322T+ protein retains one 20-a.a. repeat that can bind to β-catenin and decrease Wnt signaling (34, 35). The Apc1322T+ allele results in complete deletion of Apc and polyps in Apc1322T+ mice also display less Wnt signaling than polyps in ApcMin+ mice (34). However, the "just right" hypothesis does not readily explain why Apc1716+/+ mice show higher activation of Wnt signaling and more polyps than ApcMin+ mice (40). In addition, several groups have reported that although loss of both Apc alleles is required to activate Wnt signaling (as assessed by nuclear translocation of β-catenin), this Apc loss is not sufficient for full Wnt signal activation (11, 41, 42). To establish the extent to which Wnt signaling and polyp growth contribute to phenotypic variation, Wnt signaling activities and proliferation rates must be directly compared in different Apc mouse models.

Different abilities to evade growth-inhibitory effects

Another explanation of variation in polyp number among different Apc mouse models is negative selection of particular Apc genotypes. This negative selection could contribute to the "just right" hypothesis. Support for negative selection contributing to polyp phenotypes is provided by the observation that addition of Cdx2 or BubR1 mutations to ApcMin+ or ApcMin+/− mice, respectively, results in reduced polyp multiplicity and increased apoptotic indices in the small intestines, despite the increased proliferation index in these cells (43, 44). Similarly, induction of a conditional Apc mutation in hematopoietic stem cells results in upregulation of Wnt signaling and increased stem cell proliferation with increased apoptosis and eventual exhaustion of the stem cell population (45). If this phenotype holds true for intestinal tissues, the "just right" hypothesis might explain the increased stem cell number in polyps from Apc1322T+ mice relative to those from ApcMin+ mice, despite lower...
Table 1. Summary of rodent models with germline Apc mutations before MCR

<table>
<thead>
<tr>
<th>Model (ref.)</th>
<th>Apc mutation</th>
<th>Intestinal phenotype</th>
<th>Polyp distribution</th>
<th>Extraintestinal phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApcΔ1-15/+ (34)</td>
<td>Complete deletion of entire Apc gene</td>
<td>– (160) polyps/male, (190)/female</td>
<td>– Similar distribution as in ApcMin/+ mice</td>
<td>– Anemia</td>
</tr>
<tr>
<td>Apcδ242/+ (55)</td>
<td>(β)-geo gene trap cassette inserted between exons 7 and 8 leads to stop after codon 242</td>
<td>– 177 polyps</td>
<td>– Similar distribution as in ApcMin/+ mice</td>
<td>– NR</td>
</tr>
<tr>
<td>ApcΔ474/+ (86)</td>
<td>Insert of duplicated exons 7–10 leads to frameshift and stop after codon 474</td>
<td>– 122 polyps</td>
<td>– Mainly small intestine (SI)</td>
<td>– Mammary tumors in 18.5% females at 3–5 months (adenocanthoma)</td>
</tr>
<tr>
<td>ApcΔ580/+ (75)</td>
<td>Exon 14 deletion leads to frameshift and stop after codon 580</td>
<td>– 120 polyps</td>
<td>– Mainly SI</td>
<td>– Anemia</td>
</tr>
<tr>
<td>ApcΔ14/þ (86)</td>
<td>Exon 14 deletion leads to frameshift and stop after codon 580</td>
<td>– 36 polyps</td>
<td>– SI</td>
<td>– Mammary tumors (9%)</td>
</tr>
<tr>
<td>ApcΔ580CD/+ (93)</td>
<td>Exon 14 deletion leads to frameshift and stop after codon 580</td>
<td>– 185 polyps</td>
<td>– Mostly SI</td>
<td>– Cutaneous cysts</td>
</tr>
<tr>
<td>ApcΔ15/þ (76)</td>
<td>Deletion of the last exon (exon 15) including 3' untranslated region</td>
<td>– 58–256 polyps</td>
<td>– Normal crypt maturation gradient lost</td>
<td>– Desmoid tumors</td>
</tr>
<tr>
<td>ApcΔ716/+ (10, 40)</td>
<td>Inserted Neo5 and diphtheria toxin (α)-subunit genes in exon 15 leads to stop after codon 716</td>
<td>– 20–100 polyps</td>
<td>– Intestinal polyposis</td>
<td>– Anemia</td>
</tr>
<tr>
<td>ApcΔ850/+ (19, 67, 79)</td>
<td>Generated by ENU screen Nonsense mutation after codon 850</td>
<td>– 60% in distal 1/3 of the SI</td>
<td>– NR</td>
<td>– NR</td>
</tr>
</tbody>
</table>

NOTE: Apc mouse models reported in this table are on C57BL/6 background, but with different backcross isogenicity from N2 to > N20. Apc rat models reported in the table are on F344 background. Apc models are mouse models unless otherwise noted. Abbreviations: ENU, ethyl nitrosourea; SI, small intestine; NR, not reported.
<table>
<thead>
<tr>
<th>Model (ref)</th>
<th>Apc mutation</th>
<th>Intestinal phenotype</th>
<th>Polyp distribution</th>
<th>Extraintestinal phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apc<sup>1309</sup>+/+- (70, 95, 96)</td>
<td>Neo<sup>R</sup> gene inserted leads to truncation after codon 1309</td>
<td>– 33–37 polyps on average</td>
<td>– Mainly SI</td>
<td>– Centrilobular cholestasis in liver</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Benign adenoma</td>
<td>– Few stomach and colon</td>
<td>– Microvesicular fatty liver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– SI polyps more proximal than Apc<sup>Min</sup>/+-; only 1/3 distal</td>
<td>– Abnormal serum lipid profile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Anemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Splenomegaly</td>
</tr>
<tr>
<td>Apc<sup>1322</sup>T/+- (32, 35)</td>
<td>Deletion after codon 1322</td>
<td>– 200 polyps</td>
<td>– Most in SI</td>
<td>– Mammary-invasive adenocarcinoma in 100% of females and 30% of males</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Benign adenomas with severe dysplasia in large polyps</td>
<td>– Few in colon and stomach</td>
<td>– Viable homozygous mutant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Polyps have less Wnt signaling but more stem cells relative to those from Apc<sup>Min</sup>/+ mice</td>
<td>– SI polyps more proximal than Apc<sup>Min</sup>/+ (<20% in distal 1/3 of SI)</td>
<td>– Postnatal growth retardation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Cutaneous cysts in nipples</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Absent preputial glands</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Aberrant response of thyroid gland to thyroid-stimulating hormone</td>
</tr>
<tr>
<td>Apc<sup>1572</sup>T/+- (38)</td>
<td>PGK-Hygromycin cassette inserted in sense orientation leads to stop at codon 1572</td>
<td>– None</td>
<td>– N/A</td>
<td>– Desmoid tumors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Cutaneous cysts</td>
</tr>
<tr>
<td>Apc<sup>1638</sup>T/1638T (69, 97)</td>
<td>PGK-Hygromycin cassette inserted in sense orientation leads to stop at codon 1638</td>
<td>– None</td>
<td>– N/A</td>
<td>– Homozygous mutant animals are viable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Viable homozygous mutant</td>
</tr>
<tr>
<td>Apc<sup>1638N</sup>/+- (71)</td>
<td>Neo<sup>R</sup> gene inserted in antisense orientation leads to stop after codon 1638</td>
<td>– <10 polyps</td>
<td>– SI, colon, and stomach</td>
<td>– Homozygous mutant animals are viable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Benign adenoma and adenocarcinoma</td>
<td>– Uniformly distributed along SI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Aberrant crypt foci</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Liver metastasis in one mouse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAD rat (68)</td>
<td>Nonsense mutation in Apc codon 2523</td>
<td>– No spontaneous intestinal tumors</td>
<td>– Colon (AOM-DSS-induced)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Homozygous mutant rats have increased incidence and multiplicity of colonic tumors when treated with AOM-DSS relative to treated wild-type rats</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Apc mouse models reported in this table are on C57BL/6 background, but with different backcross isogenicity from N2 to N20. Apc rat models reported in the table are on F344 background. Apc models are mouse models unless otherwise noted. Abbreviations: AOM-DSS, azoxymethane-dextran sodium sulfate; N/A, not applicable; Neo^R, neomycin resistance gene; SI, small intestine.
emerge in what is considered a congenic strain (46). Several genes are present in different mouse strains and can even modulate polyp detection. A genetic modifier is a genetic locus that modifies the effect produced by a nonallelic locus. Modifier genes are present in different mouse strains and can even emerge in what is considered a congenic strain (46). Several modifier loci have been found to affect intestinal polyposis in $Apc_{\text{Min}}^{-/-}$ mice and are named modifier of min (Mom; reviewed in ref. 18). Some modifiers are single genes, others are thought to represent contiguous genes and some remain less well defined (47). The modifiers appear to function as recessive, dominant, or semidominant loci (17). The first identified modifier gene, Mom-1 ($Pla2g2a$), works in a cell nonautonomous manner, possibly by reducing inflammatory response in the gut (48–50). The Mom-2 ($Atp5a1$) allele is on the same chromosome as Apc (chromosome 18) and appears to inhibit loss of the wild-type Apc allele (48, 51). The mechanisms of action of other modifiers such as Mom-3, Mom-7, Mom-12, and Mom-13 are not understood (52–54).

Although identified in $Apc_{\text{Min}}^{-/-}$ mice, Mom genes likely also affect phenotypes of other Apc mouse models. For instance, the C3H/HeJ mouse strain carries at least one Mom gene, $Mom-12$, and $Mom-13$ are not understood (52–54).

Environmental factors, such as intestinal flora, might also contribute to phenotypic variation (56). While intestinal flora appear to increase the number of polyps in $Apc_{\text{Min}}^{-/-}$ mice (57), $Apc^{\Delta 14^{-/-}}$ mice raised in pathogen-free conditions showed significant increases in intestinal polyp number (58).

Table 3. Summary of mouse models with other germline Apc mutations

<table>
<thead>
<tr>
<th>Model (ref.)</th>
<th>Apc mutation</th>
<th>Intestinal phenotype</th>
<th>Polypl distribution</th>
<th>Extraintestinal phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Apc^{\text{NLS/NLS}}$ (39)</td>
<td>Inactivating mutations in the 2 nuclear localization signals</td>
<td>– Increased cellular proliferation in intestinal epithelial cells</td>
<td>N/A</td>
<td>NR</td>
</tr>
<tr>
<td>Apc^{MSAMP} (65)</td>
<td>Deletion of codons between 1322 and 2006</td>
<td>– 0.2 polyps in Apc^{NeoR}</td>
<td>Similar to $Apc^{1322T/-}$</td>
<td>Similar to $Apc^{1322T/-}$</td>
</tr>
<tr>
<td>Apc^{NeoF} (36, 37)</td>
<td>Neo^{D} gene in intron 13 in reverse (Apc^{NeoF}) direction</td>
<td>Reduced Apc level to 10% and 20%, respectively</td>
<td>SI</td>
<td>Apc^{NeoR} embryos show severe developmental abnormalities and die in utero</td>
</tr>
<tr>
<td>$Apc^{716/-/-}$ (98)</td>
<td>Mutant Apc allele truncated after codon 716 inserted as transgene in mouse with 2 wild-type Apc alleles</td>
<td>– None</td>
<td>N/A</td>
<td>Abdominal hamartoma in one mouse</td>
</tr>
<tr>
<td>$Apc^{716/-716/-}$ (98)</td>
<td>Mutant Apc truncated after codon 716 inserted as transgene in $Apc^{\text{Min}}^{-/-}$</td>
<td>Similar to $Apc^{716/-}$</td>
<td>Similar to $Apc^{716/-}$</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Apc mouse models reported in this table are on C57Bl/6 background, but with different backcross isogenicity from N2 to > N20. All models are mouse models.

Abbreviations: NR, not reported; N/A, not applicable; Neo^{D}, neomycin resistance gene.

Wnt signaling in polyps from the former model relative to those from $Apc^{\Delta 14^{-/-}}$ mice.

Distinctive effects on differentiation

It is possible that the effect of Apc genotypes on enterocyte differentiation contributes to differences in intestinal polyp number. For instance, compared with $Apc^{\text{Min}}^{-/-}$ mice, $Apc^{1322T/-}$ mice have a higher proportion of Paneth cells and cells that express stem cell markers ($Lgr5$, $Bmi1$, $Msi1$, and $CD44$), not only in adenomas but also in apparently normal intestinal epithelial cells (35). Cell fates that result from different Apc genotypes might alter tumor initiation or growth. Again, Wnt signaling is one of several factors proposed to affect differentiation.

Contributions of genetic modifiers or environmental factors

It is well established that genetic and environmental factors affect intestinal polyp multiplicity in Apc mouse models. Polyp multiplicity in $Apc^{\text{Min}}^{-/-}$ mice varies greatly between laboratories (20–100/mouse; refs. 17, 18). This inconsistency might result from variations in diet, emergence of genetic modifiers, and even from different methods of polyp detection. A genetic modifier is a genetic locus that modifies the effect produced by a nonallelic locus. Modifier genes are present in different mouse strains and can even emerge in what is considered a congenic strain (46).
Diet is another major environmental factor that clearly impacts the mouse phenotype (59–61). Although typically defined, the concentration of various vitamins, fiber, and total fat varies greatly between laboratory mouse diets. In our own experience, switching the mouse diet had a dramatic effect on polyp multiplicity in our ApcΔmin/+ mouse colony. We found that the polyp burden per mouse significantly increased from 45.9 ± 4.5 in 10 ApcΔmin/+ mice on Lab diet 5001 (Purina) to 81 ± 9.3 in 25 age-matched ApcΔmin/+ mice on Harlan 2018 diet (P = 0.0006). Notably, the new diet (Harlan 2018) has a 24% increase in fat and decreased fiber, vitamin D, and folic acid by 42%, 67%, and 44%, respectively. Unfortunately, these interlaboratory variables such as diet confound direct comparison of the phenotypes of Apc mouse models studied in different laboratories.

Differences in cellular migration and adhesion

APC interaction with cytoskeletal components, including actin filaments and microtubules, is thought to affect cell adhesion and migration (62, 63). Decreased cellular adhesion and migration in cells with APC mutations is expected to contribute to tumor formation (64). APC interacts with cytoskeletal proteins through its C-terminal region, which is absent in Apc from most mouse models (Fig. 1). Although normal expression of the MCR is indicated as follows: Hom, homodimerization; Arm, Armadillo repeats; serine–alanine–methionine–proline (SAMP), axin binding; NLS, nuclear localization signals. C-terminal includes microtubule–, EB1–, and PDZ-binding domains. The MCR is between codons 1250 and 1464.

Differences in technologies used to generate the mouse model

Apc rodent models have been generated using three different technologies: chemical mutagenesis screen, insertion of an antibiotic resistance gene into the ends of truncated Apc protein that they might be considered virtually null (69, 72); yet the described phenotype of ApcΔneoR mice is not similar to that of the ApcΔneo+/− model, which has a complete deletion of the Apc gene (34, 72). The neomycin resistance gene clearly affects the phenotypes of these mice and if inserted in reverse orientation might affect not only Apc expression but also expression of genes upstream of Apc. It is possible that the 6-fold difference in intestinal polyp number between ApcΔneo/+ and ApcΔneo−/+ mice, which differs by only 13 amino acids, stems from the different technology used in their generation: Cre-loc–mediated deletion in ApcΔneo/+ versus insertion of an antibiotic resistance cassette in ApcΔneo−/−. However, other genetic and environmental factors may contribute to the variation between these two mouse models as well (32, 70). A final illustration of the challenges in generation of Apc mouse models is the ApcΔ474/− mice, which have a duplication of Apc exons 7 to 10. This feature complicates dissection of the contribution of exon duplication to the phenotype (73).

Differences in expression of the mutant allele

When analyzing the phenotypes of different Apc mouse models, another consideration is the level of expression of the mutant allele. ApcΔmin/+ and ApcΔmin−/− models, which differ only by orientation of the inserted neomycin resistance gene, provide clear evidence for the contribution of extraneous DNA to phenotypic variation (69). ApcΔmin−/+ mice express so little truncated Apc protein that they might be considered virtually null (69, 72); yet the described phenotype of ApcΔneoR mice is not similar to that of the ApcΔneo+/− model, which has a complete deletion of the Apc gene (34, 72). The neomycin resistance gene clearly affects the phenotypes of these mice and if inserted in reverse orientation might affect not only Apc expression but also expression of genes upstream of Apc. It is possible that the 6-fold difference in intestinal polyp number between ApcΔneo/+ and ApcΔneo−/+ mice, which differs by only 13 amino acids, stems from the different technology used in their generation: Cre-loc–mediated deletion in ApcΔneo/+ versus insertion of an antibiotic resistance cassette in ApcΔneo−/−. However, other genetic and environmental factors may contribute to the variation between these two mouse models as well (32, 70). A final illustration of the challenges in generation of Apc mouse models is the ApcΔ474/− mice, which have a duplication of Apc exons 7 to 10. This feature complicates dissection of the contribution of exon duplication to the phenotype (73).
ApcMin/+ different intestinal regions determines the mechanism of the model is supported by the finding that mice in which the wild-type Apc allele is lost (24). Haigis and colleagues showed that in a B6 background, ApcMin/+ mice develop polyps mainly in the distal half of the small intestine, and loss of the wild-type Apc allele occurs by means of LOH. In an AKR background, ApcMin/+ mice develop polyps predominantly at the ileocecal junction, and inactivation of the wild-type Apc allele is achieved through allelic silencing. In the B6 background, ApcMin/+ mice with additional mutations that inactivate the mismatch repair gene Mlh develop polyps all over the small intestine, and loss of the wild-type Apc allele is achieved through a point mutation. Apc1638N/+ mice develop polyps in a similar distribution and appear to retain the wild-type Apc allele (24).

Mechanistically, two models have been proposed to explain the connection between polyp distribution and loss of the wild-type Apc allele. In the first model, the molecular machinery in different intestinal regions determines the mechanism of the second Apc "hit" and hence the distribution of polyps. This model is supported by the finding that mice in which the wild-type Apc allele is inactivated by the same mechanism (e.g., ApcMin/+ /Mlh−/− and Apc1638N/+) have similar polyp distributions (24). However, the finding that both Apc−322T/+ and ApcMin/+ mice lose the wild-type Apc allele through LOH, yet have different polyp distributions, does not support this model. A second model proposes that polyp growth is dictated by the Apc status but also by the particular environment of the different intestinal regions, independent of the mechanism of the second Apc mutation. Supporting this hypothesis, Apc−3716/+ mice with an additional mutation of Cdx2 exhibit more colonic and fewer small intestinal polyps. Yet, loss of the wild-type Apc allele occurs via LOH regardless of Cdx2 status (44). Similarly, a colonic shift of polyps has been described in ApcMin/+ mice with an additional BubR1 mutation, although the mechanism of loss of the wild-type Apc allele in these mice was not reported (43). Mutation of both Cdx2 and BubR1 increases chromosomal instability and changes the proliferation and apoptotic indices in intestines of Apc314/+ and ApcMin/+ mice, respectively (43, 44). Further support for the second model comes from ApcMin/+ mice in a 129/Sv background, where additional mutations that inactivate Smad3 result in increased colonic tumors; yet, in both cases, loss of the wild-type Apc allele is achieved through LOH (81). Finally, PPARγ agonists increase colonic but not small intestinal tumors in ApcMin/+ mice (82, 83). PPARγ is expressed in higher quantities in the colon and cecum relative to the small intestine, which might account for this differential effect (83).

An expansion of the "just right" hypothesis has been proposed to explain the variation in polyp distribution among patients with FAP and ApcMin/+ and Apc−322T/+ mice. The basal level of Wnt signaling is not the same in different intestinal regions. It was proposed that changes in Wnt signaling that result from specific Apc mutations cause optimal Wnt signaling for polyp growth only in certain intestinal regions. On the other hand, in other intestinal regions, these same Apc mutations will result in a higher or lower Wnt signaling level than what is optimal for tumor growth (84).

Perhaps some of these mechanisms can be clarified by studying ApcMin−/FCCC+ mice, which were generated by mating C57Bl/6 ApcMin/+ males with Apc−/− females from an independent colony of C57Bl/6 mice maintained at Fox Chase Cancer Center (Philadelphia, PA). ApcMin−/FCCC+ mice develop more colonic polyps than do ApcMin/+ mice, but the molecular basis behind this polyp shift has not been determined (85).

Further clarification of the underlying mechanisms that control polyp distribution might also be achieved through careful analysis of Apc314/+ and Apc580D/+ mice, which carry similar mutations (truncating the Apc protein at amino acid 580) but appear to have different polyp distributions. Apc314/+ mice develop more colonic polyps than ApcMin/+ mice, Apc580D/+ mice develop a similar number of colonic polyps as ApcMin/+ mice, although direct comparison of Apc580D/+ and either Apc314/+ or ApcMin/+ mice has not been reported (75, 86).

Variation in Extraintestinal Phenotypes

Although best known for its role to suppress colorectal tumorigenesis, Apc mutations have been seen in other tumors including breast and liver carcinomas (4). In addition, both patients with FAP and rodent models with germline Apc mutations develop extraintestinal phenotypes (see Tables 1–3). As with the intestinal phenotype, the underlying mechanism for variation in extraintestinal phenotypes between patients with FAP and Apc rodent models as well as among different Apc rodent models is not completely understood. Patients with FAP have increased susceptibility to hepatic, pancreatic, thyroid, and brain tumors. They also develop desmoid tumors, dental anomalies, and congenital hypertrophy of retinal pigment epithelium. It is important to note that the penetrance of these extraintestinal phenotypes is variable in patients with FAP (16, 87). The basis behind this variation is not completely understood, although it seems to correlate with the Apc germline as well as the acquired somatic mutations. (16, 33).
Apc rodent models also develop some of these extraintestinal manifestations; for example, Apc^{H163N/+} mice develop desmoid tumors (72) and PIBR rats show mandibular osteoma (9). Other phenotypes described in patients with FAP have not been reported for Apc rodent models. The short life span of most Apc rodent models could prevent the full expression of some of these phenotypes. On the other hand, Apc rodent models manifest some other extraintestinal phenotypes that have not been described in patients with FAP (Tables 1–3). For example, many mouse models with germline Apc mutations develop mammary tumors. Although APC mutations and promoter methylation have been found in up to 70% of sporadic human breast cancers, patients with FAP do not appear at an increased risk for breast tumors (88–90). In addition, adenocanthoma is a common type of mammary tumor that develops in Apc mouse models but it has not been reported in humans (91). Other extraintestinal phenotypes described in Apc rodent models include splenomegaly, abnormal hematopoiesis, changes in the serum lipid profile, gonadal changes, cutaneous cysts, and thyroid abnormalities. Differences in physiology, life span, and genetic content between human, mouse, and rat could be underlying causes.

Among different Apc mouse models, some extraintestinal phenotypes, such as anemia and splenomegaly, seem to correlate with the severity of intestinal polyposis. In contrast, mammary gland tumors in Apc mouse models appear to correlate with the severity of polyposis in only a few cases, such as in the Apc^{Min} and Apc^{Min/+,AT47/+} models. Very few Apc^{Min/+} mice develop mammary tumors, whereas Apc^{Min/+,AT47/+} mice develop mammary tumors at a rate that is almost double that seen in Apc^{Min/+} mice (73, 91). In contrast, there are no reports of mammary tumor development in Apc mouse models with the most severe intestinal polyposis (Apc^{AT14,AT322T} and Apc^{SSAMP}, refs. 32, 40, 65). Perhaps mice with severe polyposis die too early, before mammary tumors have a chance to develop. Apc^{5272T/+} mice, which develop no intestinal polyposis, have a fully penetrant mammary tumor phenotype in females. K14-cre-Apc^{C500/+} mice are a conditional model in which the Apc⁵²⁰⁶ allele is expressed only in ectoderm-derived tissues including the mammary gland (75, 92). Mammary tumors from these mice have mutations in the wild-type Apc allele that cluster around codon 1530 consistent with the requirement of an optimal level of Wnt signaling for mammary tumorigenesis (38). It is likely that some of the genetic and environmental factors previously described also account for the variability in extraintestinal phenotypes among different Apc rodent models.

Conclusions and Future Directions

APC research has benefitted greatly from different rodent models with germline Apc mutations. However, genotype–phenotype correlation of these different models is confounded by many genetic and environmental factors. Use of standardized genetic backgrounds and environmental conditions in different laboratories should enable reliable genotype–phenotype analysis of these animals. This standardization will also shed light on the role of different Apc mutations in tumorigenesis. When possible, a direct comparative analysis of different models in the same laboratory will illuminate the contribution of many factors described in this review to phenotypic variation in rodent models with germline Apc mutations.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Disclaimer

The contents are solely the responsibility of the authors and do not necessarily represent the official views of NIH.

Authors’ Contributions

Conception and design: M. Zeineldin, K.L. Neufeld
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M. Zeineldin
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): K.L. Neufeld, M. Zeineldin
Writing, review, and/or revision of the manuscript: M. Zeineldin, K.L. Neufeld

Grant Support

This work was supported by grants from the National Cancer Institute (R01 CA109220), the National Center for Research Resources (P20 RR016475), and the National Institute of General Medical Sciences (P20 GM103418) from the NIH.

Received December 17, 2012; revised January 11, 2013; accepted January 21, 2013; published OnlineFirst April 10, 2013.

References

Downloaded from cancerres.aacrjournals.org on April 13, 2017. © 2013 American Association for Cancer Research.

Irving AA, Halberg RB, Albrecht DM, Plum LA, Krentz KJ, Clipson L, et al. Supplementation by vitamin D compounds does not affect cancer. Published OnlineFirst April 15, 2013; DOI: 10.1158/0008-5472.CAN-12-4607

Copyright © 2013 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from cancerres.aacrjournals.org on April 13, 2017. © 2013 American Association for Cancer Research.
Understanding Phenotypic Variation in Rodent Models with Germline Apc Mutations

Maged Zeineldin and Kristi L. Neufeld

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-12-4607

Cited articles
This article cites 96 articles, 45 of which you can access for free at:
http://cancerres.aacrjournals.org/content/73/8/2389.full.html#ref-list-1

Citing articles
This article has been cited by 9 HighWire-hosted articles. Access the articles at:
/content/73/8/2389.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.