Highlights from Recent Cancer Literature

Sialic Acids Sweeten a Tumor’s Life
Christian Büll, Marieke A. Stoel, Martijn H. den Brok, and Gosse J. Adema

Immune-Based Antitumor Effects of BRAF Inhibitors Rely on Signaling by CD40L and IFN-g
Ping-Chih Ho, Katrina M. Meeth, Yao-Chen Tsui, Bhasakar Srivastava, Marcus W. Rosenberg, and Susan M. Kaech

MicroRNA-542-3p Positively Regulates p53
Yemin Wang, Jen-Wei Huang, Maria Castella, David George Huntsman, and Toshiyasu Taniguchi

Global Transcriptome Analysis of Formalin-Fixed Prostate Cancer Specimens Identifies Biomarkers of Disease Recurrence

Colorectal Cancer Cell Lines Are Representative Models of the Main Molecular Subtypes of Primary Cancer
Dmitri Mouradov, Clare Sloggett, Robert N. Jorissen, Christopher G. Love, Shan Li, Antony W. Burgess, Diego Arango, Robert L. Straussberg, Daniel Buchanan, Samuel Wormald, Liam O’Connor, Jennifer L. Wilding, David Bicknell, Ian P.M. Tomlinson, Walter F. Bodmer, John M. Mariadason, and Oliver M. Sieber

This study positively addresses the question of how well in vitro-established colorectal cancer cell lines represent primary human tumors, in the absence of any stromal or organismal context, providing a genome-level validation that supports their continued use as tools to investigate colorectal cancer biology and drug responses.

This study identifies independent risk factors for benign proliferative breast disease, suggesting that these factors directly influence the early stages of breast cancer development.

Global metabolomics can be used to uncover novel metabolites detected in urine and lung tumor tissue, which have diagnostic and prognostic utility.
THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

3271 Novel Polymeric Nanoparticles for Intracellular Delivery of Peptide Cargos: Antitumor Efficacy of the BCL-2 Conversion Peptide NuBCP-9
Manoj Kumar, Dikshi Gupta, Gurpal Singh, Sapna Sharma, Madhusudan Bhat, C.K. Prashant, A.K. Dinda, Surender Kharbanda, Donald Kufe, and Harpal Singh

Precis: Striking demonstrations of in vivo efficacy are a highlight of this study, which reports an effective nanoparticle formulation for sustained delivery of anticancer peptides to target intracellular oncoproteins.

3282 Notch3 Pathway Alterations in Ovarian Cancer
Wei Hu, Tao Liu, Cristina Ivan, Yunjie Sun, Jie Huang, Lingegowda S. Mangala, Takahito Miyake, Heather J. Dalton, Sunila Pradeep, Rajesh Rupaimoole, Rebecca A. Previs, Hee Dong Han, Justin Bottsford-Miller, Behrouz Ram, Yu Kang, Chad V. Pecot, Alpa M. Nick, Sherry Y. Wu, Ju-Seog Lee, Vasudha Sehgal, Prahad Ram, Jinsong Liu, Susan L. Tucker, Gabriela Lopez-Berestein, Keith A. Baggerly, Robert L. Coleman, and Anil K. Sood

Precis: These findings identify previously unknown mechanisms underlying an important signaling pathway in serous ovarian cancers, identifying new biomarker-driven approaches for therapy.

3294 Inhibiting Tankyrases Sensitizes KRAS-Mutant Cancer Cells to MEK Inhibitors via FGFFR2 Feedback Signaling
Marie Schoumacher, Kristen E. Hurov, Joseph Leh, Yan Yan-Neale, Yuji Mishina, Dmitriy Sonkin, Joshua M. Korn, Daisy Fleming, Michael D. Jones, Brandon Antonakos, Vesselina G. Cooke, Janine Steiger, Jebediah Ledell, Mark D. Stump, William R. Sellers, Nika N. Danial, and Wenlin Shao

Precis: This study addresses the long-standing challenge of developing highly effective therapeutics against KRAS-mutant cancers, also identifying a strategy to suppress a newly discovered resistance mechanism.

TUMOR AND STEM CELL BIOLOGY

3306 Separating Tumorigenicity from Bile Acid Regulatory Activity for Endocrine Hormone FGFI9
Mei Zhou, Xueyan Wang, Van Phung, Darrin A. Lindhout, Kalyani Mondal, Jer-Yuan Hsu, Hong Yang, Mark Humphrey, Xunshan Ding, Tanuja Arora, R. Marc Learned, Alex M. DePaoli, Hui Tian, and Lei Ling

Precis: These results conclusively link the cancerous properties of the FGFI9–FGFR4 pathway in liver to STAT3 activation, with potential implications for how to improve the treatment of chronic liver disease and cancer.

3317 IDH1 Mutations Alter Citric Acid Cycle Metabolism and Increase Dependence on Oxidative Mitochondrial Metabolism
Alexandra R. Grassian, Seth J. Parker, Shawn M. Davidson, Ajit S. Divakaruni, Courtney R. Green, Xiamei Zhang, Kelly L. Slucum, Minying Pu, Fallon Lin, Chad Vickers, Carol Joud-Caldwell, Franklin Chung, Hong Yin, Erika D. Handly, Christopher Straub, Joseph D. Grownway, Matthew G. Vander Heiden, Anne N. Murphy, Raymond Pagliarini, and Christian M. Metallo

Precis: These results suggest therapeutic opportunities to exploit a set of metabolic vulnerabilities specific to IDH1 mutation in cancer cells.

3332 Activation of SOX2 Expression by BRD4-NUT Oncogenic Fusion Drives Neoplastic Transformation in NUT Midline Carcinoma
Ranran Wang, Wei Liu, Christine M. Helfer, James E. Bradner, Jason L. Hornick, Susan M. Janicki, Christopher A. French, and Jianxin You

Precis: The discovery of an aberrant stem-like cell proliferation associated with dysregulation of a factor that binds chromosomes during mitosis has general implications in cancers in which that factor is dysregulated.

3344 Impaired JNK Signaling Cooperates with Kras Expression to Accelerate Pancreatic Ductal Adenocarcinoma
Clare C. Davies, Emma Harvey, Raymond F.T. McMahon, Katherine G. Finegan, Frances Connorn, Roger J. Davis, David A. Tuveson, and Cathy Tournier

Precis: Evidence gleaned from a preclinical model of pancreatic cancer suggests that JNK activation limits K-ras-induced tumor development, identifying a suppressor pathway in this system.
Transient Induction of ING4 by Myc Drives Prostate Epithelial Cell Differentiation and Its Disruption Drives Prostate Tumorigenesis

Penny L. Berger, Sander B. Frank, Veronique V. Schulz, Eric A. Nollet, Mathew J. Edick, Brittany Holly, Ting-Tung A. Chang, Galen Hostetter, Suwon Kim, and Cindy K. Miranti

Précis: This study identifies a pivotal signaling node that may explain why MYC and PTEN inactivation cooperate in prostate tumorigenesis.

E2F1 Responds to Ultraviolet Radiation by Directly Stimulating DNA Repair and Suppressing Carcinogenesis

Anup Kumar Biswas, David L. Mitchell, and David G. Johnson

Précis: This article defines a nontranscriptional function in DNA repair for the core cell-cycle regulatory transcription factor E2F1.

ABOUT THE COVER

B-RafV600E inhibitors are potent at halting melanoma progression in patients harboring oncogenic B-RafV600E mutation. Recent studies indicate that chemotherapies and other target treatments suppress tumor growth via a host immunity-dependent manner. Using a genetically modified mouse model of melanoma, it was found that diminished CD40L- and IFNγ-mediated signaling contributed to the formation of immunosuppressive tumor microenvironment and that treatment with a BrafV600E inhibitor, PLX4720, could reinvigorate local immune function. Indeed, maximal effectiveness of PLX4720 was dependent on restoration of CD40L- and IFNγ-mediated immune signals. This study illustrates that certain chemotherapies directed at the tumor rely on immune signaling pathways and that this has relevance for the design of combined treatments with immunotherapies. For details, see the article by Ho and colleagues on page 3205.