### BREAKING ADVANCES

<table>
<thead>
<tr>
<th>Page</th>
<th>Highlights from Recent Cancer Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>3197</td>
<td>Sialic Acids Sweeten a Tumor’s Life</td>
</tr>
</tbody>
</table>

### REVIEW

<table>
<thead>
<tr>
<th>Page</th>
<th>Sialic Acids Sweeten a Tumor’s Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>3199</td>
<td>Christian Büll, Marieke A. Stoej, Martijn H. den Brok, and Gosse J. Adema</td>
</tr>
</tbody>
</table>

### MICROENVIRONMENT AND IMMUNOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Immune-Based Antitumor Effects of BRAF Inhibitors Rely on Signaling by CD40L and IFN-γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3205</td>
<td>Ping-Chih Ho, Katrina M. Meeth, Yao-Chen Tsui, Bhaskar Srivastava, Marcus W. Bosenberg, and Susan M. Kaech</td>
</tr>
</tbody>
</table>

#### Précis

*The robust antitumor properties of B-Raf kinase inhibitors appear to relate to an ability to correct immune escape, suggesting new uses for these drugs in cancer treatment through combination with active immunotherapies.*

### MOLECULAR AND CELLULAR PATHOBIOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>p53 Is Positively Regulated by miR-542-3p</th>
</tr>
</thead>
<tbody>
<tr>
<td>3218</td>
<td>Yemin Wang, Jen-Wei Huang, Maria Castella, David George Huntsman, and Toshiyasu Taniguchi</td>
</tr>
</tbody>
</table>

#### Précis

*These findings define a microRNA that potently activates p53 and suppresses ribosome biogenesis, defining a novel core regulatory pathway in cell proliferation and survival.*

### PREVENTION AND EPIDEMIOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Noninvasive Urinary Metabolomic Profiling Identifies Diagnostic and Prognostic Markers in Lung Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3259</td>
<td>Ewy A. Mathé, Andrew D. Patterson, Majda Hazanad, Soumen K. Manna, Kristopher W. Krausz, Elise D. Bowman, Peter G. Shields, Jeffrey R. Idle, Philip B. Smith, Katsuhiko Anami, Dickran G. Kazandjian, Emmanuel Hatzakis, Frank J. Gonzalez, and Curtis C. Harris</td>
</tr>
</tbody>
</table>

#### Précis

*Global metabolomics can be used to uncover novel metabolites detected in urine and lung tumor tissue, which have diagnostic and prognostic utility.*
3271 Novel Polymeric Nanoparticles for Intracellular Delivery of Peptide Cargos: Antitumor Efficacy of the BCL-2 Conversion Peptide NuBCP-9
Manoj Kumar, Dikshi Gupta, Gurpal Singh, Sapna Sharma, Madhusudan Bhat, C.K. Prashant, A.K. Dinda, Surender Kharbanda, Donald Kufe, and Harpal Singh

Precis: Striking demonstrations of in vivo efficacy are a highlight of this study, which reports an effective nanoparticle formulation for sustained delivery of anticancer peptides to target intracellular oncoproteins.

3282 Notch3 Pathway Alterations in Ovarian Cancer
Wei Hu, Tao Liu, Cristina Ivan, Yunjie Sun, Jie Huang, Lingegowda S. Mangala, Takahito Miyake, Heather J. Dalton, Sunila Pradeep, Rajesh Rupaimoole, Rebecca A. Previs, Hee Dong Han, Justin Bottsford-Miller, Behrouz Sehgal, Prahld Ram, Jinsong Liu, Susan L. Tucker, Gabriel Lopez-Berestein, Keith A. Baggerly, Robert L. Coleman, and Anil K. Sood

Precis: These findings identify previously unknown mechanisms underlying an important signaling pathway in serous ovarian cancers, identifying new biomarker-driven approaches for therapy.

3294 Inhibiting Tankyrases Sensitizes KRAS-Mutant Cancer Cells to MEK Inhibitors via FGFR2 Feedback Signaling
Marie Schoumacher, Kristen E. Hurov, Joseph Leahr, Yan Yan-Neale, Yuji Mishina, Dmitriy Sonkin, Joshua M. Korn, Daisy Fleming, Michael D. Jones, Brandon Antonakos, Vesselina G. Cooke, Janine Steiger, Jebediah Ledell, Mark D. Stump, William R. Sellers, Nika N. Danial, and Wenlin Shao

Precis: This study addresses the long-standing challenge of developing highly effective therapeutics against KRAS-mutant cancers, also identifying a strategy to suppress a newly discovered resistance mechanism.

3306 Separating Tumorigenicity from Bile Acid Regulatory Activity for Endocrine Hormone FGF19
Mei Zhou, Xueyan Wang, Van Phung, Darrin A. Lindhout, Kalyani Mondal, Jer-Yuan Hsu, Hong Yang, Mark Humphrey, Xunshan Ding, Taruna Arora, R. Marc Learned, Alex M. DePaoli, Hui Tian, and Lei Ling

Precis: These results conclusively link the cancerous properties of the FGF19-FGFR4 pathway in liver to STAT3 activation, with potential implications for how to improve the treatment of chronic liver disease and cancer.

3317 IDH1 Mutations Alter Citric Acid Cycle Metabolism and Increase Dependence on Oxidative Mitochondrial Metabolism
Alexandra R. Grassian, Seth J. Parker, Shawn M. Davidson, Ajit S. Divakaruni, Courtney R. Green, Xiamei Zhang, Kelly L. Slocum, Minying Pu, Fallon Lin, Chad Vickers, Carol Joud-Caldwell, Franklin Chung, Hong Yin, Erika D. Handly, Christopher Straub, Joseph D. Grownney, Matthew G. Vander Heiden, Anne N. Murphy, Raymond Pagliarini, and Christian M. Metallo

Precis: These results suggest therapeutic opportunities to exploit a set of metabolic vulnerabilities specific to IDH1 mutation in cancer cells.

3332 Activation of SOX2 Expression by BRD4-NUT Oncogenic Fusion Drives Neoplastic Transformation in NUT Midline Carcinoma
Ranran Wang, Wei Liu, Christine M. Helfer, James E. Bradner, Jason L. Hornick, Susan M. Janicki, Christopher A. French, and Jianxin You

Precis: The discovery of an aberrant stem-like cell proliferation associated with dysregulation of a factor that binds chromosomes during mitosis has general implications in cancers in which that factor is dysregulated.

3344 Impaired JNK Signaling Cooperates with KrasG12D Expression to Accelerate Pancreatic Ductal Adenocarcinoma
Clare C. Davies, Emma Harvey, Raymond F.T. McMahon, Katherine G. Finegan, Frances Connor, Roger J. Davis, David A. Tuveson, and Cathy Tournier

Precis: Evidence gleaned from a preclinical model of pancreatic cancer suggests that JNK activation limits K-ras-induced tumor development, identifying a suppressor pathway in this system.

TUMOR AND STEM CELL BIOLOGY
Transient Induction of ING4 by Myc Drives Prostate Epithelial Cell Differentiation and Its Disruption Drives Prostate Tumorigenesis

Penny L. Berger, Sander B. Frank, Veronique V. Schulz, Eric A. Nollet, Matthew J. Edick, Brittany Holly, Ting-Tung A. Chang, Galen Hostetter, Suwon Kim, and Cindy K. Miranti

Précis: This study identifies a pivotal signaling node that may explain why MYC and PTEN inactivation cooperate in prostate tumorigenesis.

E2F1 Responds to Ultraviolet Radiation by Directly Stimulating DNA Repair andSuppressing Carcinogenesis

Anup Kumar Biswas, David L. Mitchell, and David G. Johnson

Précis: This article defines a nontranscriptional function in DNA repair for the core cell-cycle regulatory transcription factor E2F1.
Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/74/12

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.