Highlights from Recent Cancer Literature

The Early Detection of Pancreatic Cancer: What Will It Take to Diagnose and Treat Curable Pancreatic Neoplasia?
Anne Marie Lennon, Christopher L. Wolfgang, Marcia Irene Canto, Alison P. Klein, Joseph M. Herman, Michael Goggins, Elliot K. Fishman, Ilhab Kamel, Matthew J. Weiss, Luis A. Diaz, Nickolas Papadopoulos, Kenneth W. Kinzler, Bert Vogelstein, and Ralph H. Hruban

Enhancement of the T-cell Armamentarium as a Cell-Based Therapy for Prostate Cancer
W. Nathaniel Brennen, Charles G. Drake, and John T. Isaacs

Oncolytic Viruses Targeting Tumor Stem Cells
E. Antonio Chiocca, Donald Blair, and R. Allan Mufson

Favorable Prognostic Impact in Loss of TP53 and PIK3CA Mutations after Neoadjuvant Chemotherapy in Breast Cancer
Yi-Zhou Jiang, Ke-Da Yu, Jing Bao, Wen-Ting Peng, and Zhi-Ming Shao

Local and Systemic Protumorigenic Effects of Cancer-Associated Fibroblast-Derived GDF15
Francesca Bruzzese, Christina Hagglof, Alessandra Leone, Elin Sjöberg, Maria Serena Roca, Sara Kilemriam, Tobias Sjöblom, Peter Hammarsten, Lars Egevad, Anders Bergh, Arne Ostman, Alfredo Budillon, and Martin Augsten

Precis: This study demonstrates for the first time that cancer-associated fibroblasts can exert systemic effects on malignant cell growth beyond the local tumor microenvironment, with potential implications for controlling metastatic progression.

LSECtin Expressed on Melanoma Cells Promotes Tumor Progression by Inhibiting Antitumor T-cell Responses
Feng Xu, Jing Liu, Di Liu, Biao Liu, Min Wang, Zhiyuan Hu, Xuemei Du, Li Tang, and Fuchu He

Precis: A T-cell-suppressive molecule studied solely in antigen-presenting cells to date is found to be expressed frequently in melanoma cells, engendering a novel mechanism of immune escape with implications for novel therapeutic strategies.

Metalloprotease-Mediated Tumor Cell Shedding of B7-H6, the Ligand of the Natural Killer Cell–Activating Receptor NKp30
Eva Schlecker, Nathalie Fiegler, Annette Arnold, Peter Altevogt, Stefan Rose-John, Gerhard Moldenhauer, Antje Sucker, Annette Paschen, Elke Pogge von Strandmann, Sonja Textor, and Adelheid Cerwenka

Precis: Blocking the ability of tumor cells to proteolytically shed a cell surface ligand recognized by natural killer immune cells can enhance the recognition and destruction of tumor cells, with implications for how to promote or sustain NK cell–based immunotherapies for cancer.

Immunosuppressive Myeloid Cells Induced by Chemotherapy Attenuate Antitumor CD4+ T-Cell Responses through the PD-1–PD-L1 Axis
Zhi-Chun Ding, Xiaoyun Lu, Miao Yu, Henrique Lemos, Lei Huang, Phillip Chandler, Kebin Liu, Matthew Walters, Antoni Krasinski, Matthias Mack, Bruce R. Blazar, Andrew L. Mellor, David H. Munn, and Gang Zhou

Precis: Chemotherapy may restrain its own efficacy by eliciting myeloid cells that have immunosuppressive activities, with implications for creating regimens of immunochemotherapy that tilt toward more effective, durable responses.
Complement C5a Receptor Facilitates Cancer Metastasis by Altering T-Cell Responses in the Metastatic Niche
Surya Kumari Vadrevu, Navin K. Chintala, Sharad K. Sharma, Priya Sharma, Clayton Cleveland, Linley Riediger, Sasikanth Manne, David P. Fairlie, Wojciech Gorczyca, Othon Almanza, Magdalena Karbowicze, and Maciej M. Markiewski

Précis: These findings offer a preclinical rationale to translate complement-based immunotherapies to the clinic as a strategy to prevent or reduce metastatic progression.

Autologous T-cell Therapy for Cytomegalovirus as a Consolidative Treatment for Recurrent Glioblastoma
Andrea Schuessler, Corey Smith, Leone Beagley, Glen M. Boyle, Sweera Rehan, Katherine Matthews, Linda Jones, Tania Crouch, Vijayendra Dasari, Kerenatli Klein, Amy Smalley, Hamish Alexander, David G. Walker, and Rajiv Khanna

Précis: Early clinical findings for a CMV-based immunotherapy tested in aggressive brain tumors encourage further evaluation of the therapeutic efficacy of this platform technology.

NCOA1 Directly Targets M-CSF1 Expression to Promote Breast Cancer Metastasis
Li Qin, Ye-Lin Wu, Michael J. Toneff, Dabing Li, Lan Liao, Xiuhua Gao, Fiona T. Bane, Jean C.-Y. Tien, Yixiang Xu, Zhen Feng, Zhihui Yang, Yan Xu, Sarah M. Theissen, Yi Li, Leonie Young, and Jianming Xu

Précis: These results define a regulatory axis controlled by a nuclear coactivator implicated in breast cancer relapse, which acts to promote metastasis by recruiting macrophages that drive this process.

G Protein–Coupled Receptor Kinase GRK5 Phosphorylates Moesin and Regulates Metastasis in Prostate Cancer
Prabir Kumar Chakraborty, Yushan Zhang, Alexandra S. Coomes, Wan-Ju Kim, Rachel Stupay, Lauren D. Lynch, Tamieka Atkinson, Jae I. Kim, Zhongzhen Nie, and Yehia Daaka

Précis: G protein–coupled receptors are readily druggable targets for which significant opportunities may exist in cancer therapy, as suggested by this study of the prometastatic contributions of GRK5 to prostate cancer.
Targeting Mitochondrial Oxidative Metabolism in Melanoma Causes Metabolic Compensation through Glucose and Glutamine Utilization

Ji-Hong Lim, Chi Luo, Francisca Vazquez, and Pere Puigserver

Précis: Because cancer cells are as metabolically flexible as they are genetically malleable, therapeutic strategies to attack cancer cell metabolism need to address multiple pathways at once.

The RAD51-Stimulatory Compound RS-1 Can Exploit the RAD51 Overexpression That Exists in Cancer Cells and Tumors

Jennifer M. Mason, Hillary L. Logan, Brian Budke, Megan Wu, Michal Pawlowski, Ralph R. Weichselbaum, Alan P. Kozikowski, Douglas K. Bishop, and Philip P. Connell

Précis: This study describes a novel therapeutic strategy to turn the heightened DNA repair capabilities of cancer cells against themselves, offering a preclinical proof of concept for a generalized approach to treat many kinds of human cancer.

API5 Confers Tumoral Immune Escape through FGF2-Dependent Cell Survival Pathway

Kyung Hee Noh, Seok-Ho Kim, Jin Hee Kim, Kwon-Ho Song, Young-Ho Lee, Tae Heung Kang, Hee Dong Han, Anil K. Sood, Joanne Ng, Kwanghee Kim, Chung Hee Sonn, Vinay Kumar, Cassian Yee, Kyung-Mi Lee, and Tae Woo Kim

Précis: These findings identify a novel pathway of immune escape in tumors that could be targeted to potentiate the efficacy of cancer vaccines or T-cell immunotherapies in the clinic, with immediate implications for the design of immunochemotherapy combinations that could heighten antitumor efficacy.

Re-engineering Vesicular Stomatitis Virus to Abrogate Neurotoxicity, Circumvent Humoral Immunity, and Enhance Oncolytic Potency

Alexander Muik, Lawton J. Stubbert, Roza Z. Jahedi, Yvonne Geiß, Janine Kimpel, Catherine Dold, Reinhard Tober, Andreas Volk, Sabine Klein, Ursula Dietrich, Beta Yadollahi, Theresa Falls, Hrvoje Miletic, David Stojdl, John C. Bell, and Dorothee von Laer

Précis: As cancer treatment tools, oncolytic viruses have mostly fallen short of expectations, with only sparse evidence for clinical efficacy so far, but the engineered viral platform described here lacks several of the major drawbacks that have hampered clinical development.

The Cancer Stem Cell Marker Aldehyde Dehydrogenase Is Required to Maintain a Drug-Tolerant Tumor Cell Subpopulation

Debasish Raha, Timothy R. Wilson, Jing Peng, David Peterson, Peng Yue, Marie Evangelista, Catherine Wilson, Mark Merchant, and Jeff Sedelmaier

Précis: These findings identify a potential therapeutic strategy for overcoming the resistance to cancer drugs that is invariably observed in cancer patients, even following an initial response to drug treatment.

Oncogenic Protein MTBP Interacts with MYC to Promote Tumorigenesis

Brian C. Grieb, Mark W. Gramling, Maria Pia Arrate, Xi Chen, Stephen L. Beauparlant, Dale S. Haines, Hua Xiao, and Christine M. Eischen

Précis: Although it was one of the first human oncogenes to be discovered over three decades ago, MYC continues to resist all efforts to develop tractable therapeutic approaches or to fully understand the basis for its powerful cancer-promoting effects.

Prolyl Isomerase Pin1 Acts Downstream of miR200c to Promote Cancer Stem-like Cell Traits in Breast Cancer

Man-Li Luo, Chang Gong, Chun-Hau Chen, Daniel Y. Lee, Hai Hu, Pengyu Huang, Yandan Yao, Wenjun Guo, Ferenc Reinhardt, Gerburg Wulf, Judy Lieberman, Xiao Zhen Zhou, Erwei Song, and Kun Ping Lu

Précis: These findings identify a targetable enzyme as a pivotal regulator of breast cancer stem-like cell development, highlighting a new therapeutic target that may be useful to eradicate advanced drug-resistant breast cancers.

Loss of the Polycomb Mark from Bivalent Promoters Leads to Activation of Cancer-Promoting Genes in Colorectal Tumors

Maria A. Hahn, Arthur X. Li, Xiwei Z. J. Qi, E. Y. Xie, X. Zhang, and X. Z. Zhou

Précis: These findings identify a gene that is critical for the maintenance of the epigenetic state of cancer-promoting genes in colorectal tumors.
Oxidative Stress Activates SIRT2 to Deacetylate and Stimulate Phosphoglycerate Mutase

Yanping Xu, Fulong Li, Lei Lv, Tingting Li, Xin Zhou, Chu-Xia Deng, Kun-Liang Guan, Qun-Ying Lei, and Yue Xiong

Précis: These results reveal a mechanism that maintains NADPH homeostasis in response to oxidative stress, not only easing cell proliferation in tumors but also licensing conditions for metabolic adaptation to otherwise growth-inhibitory conditions.

Correction: Curative Properties of Noninternalizing Antibody–Drug Conjugates Based on Maytansinoids

Correction: Emergence, Involution, and Progression to Carcinoma of Mutant Clones in Normal Endometrial Tissues

Pancreatic cancer is the most aggressive tumor, showing almost identical incidence and mortality values. Emerging data have highlighted the paramount contribution of tumor epithelium-stroma cross-talk in tumor progression. Galectin-1, a glycan-binding protein, is highly expressed in the stroma of pancreatic ductal tumors from Ela-myc mice, suggesting a role in cancer progression. Interestingly, genetic depletion of Galectin-1 in this model decreases tumor proliferation, angiogenesis, stroma formation and acinar to ductal metaplasia, and restores the immune surveillance, leading to a significant increase in animal lifespan. These results show that Galectin-1 favors tumor progression by modulation of the tumor microenvironment, suggesting that this lectin is a potential target for therapy. For details, see article by Martínez-Bosch and colleagues on page 3512.
74 (13)

Cancer Res 2014;74:3379-3644.

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/74/13

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>