IDH1 R132H Mutation Generates a Distinct Phospholipid Metabolite Profile in Glioma

Morteza Esmaeili1, Bob C. Hamans2, Anna C. Navis3, Remco van Horssen4,5, Tone F. Bathen1, Ingrid S. Gribbestad11, William P. Leenders5, and Arend Heerschap1,2

Abstract

Many patients with glioma harbor specific mutations in the isocitrate dehydrogenase gene IDH1 that associate with a relatively better prognosis. IDH1-mutated tumors produce the oncometabolite 2-hydroxylglutarate. Because IDH1 also regulates several pathways leading to lipid synthesis, we hypothesized that IDH1-mutant tumors have an altered phospholipid metabolite profile that would impinge on tumor pathobiology. To investigate this hypothesis, we performed 31P-MRS imaging in mouse xenograft models of four human gliomas, one of which harbored the IDH1-R132H mutation. 31P-MR spectra from the IDH1-mutant tumor displayed a pattern distinct from that of the three IDH1 wild-type tumors, characterized by decreased levels of phosphoethanolamine and increased levels of glycerophosphocholine. This spectral profile was confirmed by ex vivo analysis of tumor extracts, and it was also observed in human surgical biopsies of IDH1-mutated tumors by 31P high-resolution magic angle spinning spectroscopy. The specificity of this profile for the IDH1-R132H mutation was established by in vivo 31P-NMR of extracts of cells overexpressing IDH1 or IDH1-R132H. Overall, our results provide evidence that the IDH1-R132H mutation alters phospholipid metabolism in gliomas involving phosphoethanolamine and glycerophosphocholine. These new noninvasive biomarkers can assist in the identification of the mutation and in research toward novel treatments that target aberrant metabolism in IDH1-mutant glioma.

Cancer Res; 74(17): 4898–907. ©2014 AACR.

Introduction

Diffuse gliomas are the most common malignant brain-born tumors and are incurable with present therapeutic strategies (1). These tumors are classified by the World Health Organization (WHO) as grade 2, 3, and 4 of which grade 4 glioma (glioblastoma, GBM) is the most malignant type. The current median survival from the time of diagnosis for GBMs is only 14.6 months and for lower grades between 4 and 15 years (2, 3). This highly variable survival calls for reliable prognostic biomarkers for rational decision making in clinical management. Such biomarkers have become available with the discovery that in more than 70% of grade 2 and 3 gliomas and in secondary GBMs, one of the genes for isocitrate dehydrogenase (IDH1 and IDH2) carry specific mutations, which are associated with prolonged overall survival (4–8). IDH1, the predominantly affected enzyme (>95%), catalyzes the conversion of isocitrate into α-ketoglutarate (α-KG) in the cytosol, using NADP as electron acceptor to generate NADPH (Fig. 1A). IDH1 can also catalyze the reductive carboxylation of α-KG to isocitrate that can be further processed to citrate and acetyl- and succinyl-CoA, important anabolic precursors for lipid synthesis (9). The mutation in IDH1, almost always affecting arginine R132, confers a neomorphic activity to the enzyme, which results in NADPH-dependent conversion of α-KG to 2-hydroxyglutarate (2-HG; Fig. 1A; ref. 10). The mutant enzyme lacks the capacity of reductive carboxylation (11). As 2-HG accumulates in mutated tumor cells and tissues (12–14), it has attracted attention as a potential biomarker in the diagnosis and prognosis of gliomas, in particular as the high levels of 2-HG can be detected noninvasively by 1H MR spectroscopy (MRS) in humans (8, 15–19).

1H MRS has been explored extensively in the diagnosis and treatment evaluation of brain tumors in humans (20, 21). MR spectra of the brain show a single spectral peak for the methyl protons of small choline compounds, which are involved in the Kennedy pathway of membrane lipid synthesis and breakdown (Fig. 1B). In brain tumors, choline metabolism is adapted to the needs of higher proliferation and to the physiologic microenvironment (such as acidic extracellular pH; refs. 22, 23), and the intensity of this peak (labeled as total choline or tCho) is often increased (24). Another prominent spectral change is a
decrease of the peak for the methyl protons of N-acetyl aspartate (NAA), a neuronal marker compound, reflecting replacement of neurons by glial tumor cells (25). The tCho:NAA ratio is, therefore, often used as a biomarker for tumor load and malignancy in gliomas (26–28). The intensity of the tCho peak also correlates with cell density, and may be related to gliosis (29, 30).

To understand in more detail what determines the tCho peak intensity, an analysis of each contributing component is needed. This is possible with 1H MRS of ex vivo biopsy material, which has a better spectral resolution than in vivo MRS and allows the separation of tCho into peaks for phosphocholine (PC), glycerophosphocholine (GPC), and free choline (24). Ex vivo 1H MRS or high-resolution magic angle spinning (HR-MAS) spectroscopy has revealed that PC and GPC contribute importantly to the increase of tCho in brain tumors and also uncovered more subtle relationships of choline compounds with tumor features, in particular with tumor grade (31–34). Direct in vivo detection of PC and GPC is possible by 31P MRS, which also enables detection of phosphoethanolamine (PE) and glycerophosphoethanolamine (GPE), thereby providing a more complete picture of in vivo phospholipid metabolism (35). Because 31P MRS is less sensitive than 1H MRS and requires dedicated radiofrequency probes, it has been less used to examine phospholipid metabolites in vivo in brain tumors (36, 37). However, the increased access to high-field (pre-) clinical MR scanners, which improves 31P MRS sensitivity and resolution, invigorates its further exploration in studies of tumor phospholipid metabolism.

As α-KG and NADPH are important components for lipogenesis (38, 39) and as the mutated IDH enzyme consumes both compounds and lacks reductive carboxylation capacity,
we hypothesized that phospholipid metabolism is altered in IDH1-mutated glioma. To test this hypothesis, we applied in vivo 31P MR spectroscopic imaging (MRSI) to four unique and representative human glioma models growing orthotopically in mice (40), one carrying the IDH1-R132H mutation (41). The spectral findings were verified by 31P NMR analyses of tumor tissue extracts. To examine the causal relationship of the spectral profiles to expression of the mutated enzyme, we also performed 31P NMR on extracts of glioma cell lines, stably expressing wild-type or mutated IDH1. Finally, we tested if similar phospholipid profiles occur in human gliomas by performing 31P HR-MAS MRS of biopsies of gliomas in patients with and without IDH1 mutation.

Materials and Methods

Animals

Balb/c nu/nu mice were obtained from Janvier and housed in filter-top cages under specific pathogen-free conditions. Animals were fed a standard diet with food and water ad libitum. A 12-hour light, 12-hour dark day–night regimen was applied. All procedures and experiments involving animals were approved by The National Animal Research Authority, and carried out according to the European Convention for the Protection of Vertebrates used for scientific purposes.

Glioma xenografts

Glioma xenografts were injected in the brain of female Balb/c nu/nu mice (6–10 weeks of age, $n > 4$ for each individual xenograft line), as described previously (40). Two xenograft lines, labeled E468 and E473, were originally derived from human GBM biopsies, whereas E434 and E478 were established from high-grade oligodendroglioma specimens. The E478 xenograft model contains the heterozygous IDH1-R132H mutation (41). All xenografts grow via diffuse infiltration, whereas the E434 model additionally presents with some compact growth (40).

Development of IDH1 (-R132H)—expressing cell lines

To generate IDH1 and IDH1-R132H—expressing U251MG glioma cell lines, human IDH1 cDNA (accession number, BC093020, ImaGenes) in pBluescript plasmid was used for site-directed mutagenesis using the QuickChange Site-Direct- ed Mutagenesis Kit (Stratagene/Agilent). Primers containing the critical IDH1-G395A mutation were 5'-CAT ATC ATC ATA GGT CAT CAT GCT TAT GGG GATCAA TAC AG 3' (forward) and 5'-GC TCT GTA TTG ATC CCC ATA AGC ATG ATG ACC TAT GAT GAT AGG-3' (reverse, mutated bases are underlined). After mutant strand synthesis, DNA of both wild-type and mutant IDH1 was amplified using primers 5'-GAA TTC ATG TTC TCC AAA AAA ATC ATG AGC GC-3' (forward) and 5'-GGA TCC TTA AAG TGT GCC CTG AGC-3' (reverse) and cloned into the EcoRI and BamHI sites of a customized pENTR/U6 vector (Invitrogen). Both pENTR/U6 plasmids were recombined with pLenti/DEST (Invitrogen) using LR clonase-II for 6 hours at 25°C, proteinase-K treated for 10 minutes at 37°C and transformed into One Shot Stbl3 E. coli. Plasmids from overnight grown colony cultures were isolated using the Plasmid Midi Kit from Qiagen. To produce lentivirus, 293FT cells were transfected using Lipofectamine 2000 (Invitrogen) and the pLenti/DEST DNA was mixed with ViraPower Packaging mix (Invitrogen). After overnight incubation, medium was replaced and lentivirus-containing medium was harvested after 72 hours, filtered, and used to infect U251MG glioma cells for 6 hours with addition of polybrene (5 μg/mL). After 48 hours, medium was replaced with medium containing blasticidin (10 μg/mL; Invitrogen) and cells were kept under selection for at least 2 weeks. IDH1 expression in U251-IDH1 and U251-IDH1R132H cells was analyzed by Western blotting using a specific antibody recognizing the mutation (42).

Cells were grown in DMEM containing high glucose, supplemented with 10% FCS and penicillin/streptomycin (100 U/mL). 31P MRS was performed on extracts of U251 cells (parental, IDH-WT and IDH1-R132H; $n = 5$ per cell line, $>1.5 \times 10^7$ cells per sample) as described below.

Surgical specimens of glioma patients

Surgical specimens were collected from 6 IDH-wild-type (IDH-WT) glioma patients (4 GBM, 1 anaplastic astrocytoma, and 1 diffuse astrocytoma), and from 5 IDH1-R132H tumors (3 GBM, 1 anaplastic astrocytoma, and 1 diffuse astrocytoma). IDH mutation was identified by anti-IDH1-R132H immunostaining as described previously (34). Directly after surgical excision, samples were snap frozen and stored for later analysis.

In vivo 31P 3D MRSI acquisition and analysis

All in vivo MR experiments were performed on a preclinical 7T MR system (Bruker ClinScan) operating at 121.7 MHz for 31P MRS. The phosphorus spectra were acquired using a homebuilt 16-mm transmit/receive quadrature coil in combination with a solenoid 1H surface coil (20 mm in diameter). The animals were subjected to MRSI when evident signs of tumor burden (especially evident weight loss, neurologic defects) were present. A control group consisting of healthy Balb/c nu/nu animals ($n = 3$) was also included. Animals were placed in prone position and anesthetized by 1.5% isoflurane (Abbott) and a mixture of O_2 and N_2O inhalation. The animal's body temperature was maintained at 37.5°C applying warm air circulation and physiologic monitoring (Small Animal Instrument Inc.) to assess respiration and temperature. After obtaining a spatial image, T2-weighted multi spin-echo images in three orthogonal orientations of the brain were acquired. First- and second-order shimming was performed using FASTMAP (43). The MRSI field of view (FOV) and matrix size were then selected carefully reviewing T2-weighted images to cover hyperintense areas within the tumor tissues (Fig. 2). Three-dimensional 31P MR spectroscopy was performed using a 3D MRSI pulse acquire sequence with an adiabatic BIR-4 45° excitation pulse (44), a repetition time (TR) of 1500 milliseconds, Hanning-weighted cartesian k-space sampling with 196 signal averages at the centre of k-space, 2048 data points over a spectral width of 4868 Hz and a total acquisition time of 2 hours. The FOV of 24 mm × 24 mm × 24 mm with an 8 × 8 × 8 data matrix and Hanning filtering resulted in a nominal voxel size of about 5 mm3.

After the MR exams, the animals were sacrificed by cervical dislocation, the brains removed and separated in two halves,
which were frozen in liquid nitrogen for subsequent in vitro MRS analyses. Remaining brain tissue was formalin fixed and paraffin embedded for further histopathology analysis.

All in vivo MR spectra were analyzed using the jMRUI software (45) and signals fitted with a Lorentzian lineshape, except the J-coupled signals of ATP, which were fitted with a Gaussian shape, using the Advanced Method for Accurate, Robust and Efficient Spectral fitting method (46). Before fitting, spectral processing was performed, including manual phase correction, zero-filling (4,096 points), and line-broadening of 20 Hz.

Figure 2. 31P MRSI of the mouse brain with and without tumor. Orthogonal T2-weighted MR images of a mice brain with an E434 tumor (top, A) and a normal mouse brain (bottom, B) in axial, coronal, and sagittal views, and corresponding 31P MR spectra of 27 mm3 nominal voxels from the 3D 31P MRSI data (C and D). E and F, bar plot of the (PC + GPC + PE + GPE)/ATP (E) and PCr/ATP (F) signal ratios of tumor types growing in mouse brain ($n = 19$) and of normal mouse brain (Ctrl, $n = 3$). Chemical shift is referenced to the GPC resonance at 3.04 ppm. The assigned peaks are (from left to right); PE, phosphoethanolamine; PC, phosphocholine; Pi, inorganic phosphate; GPE, glycerophosphoethanolamine; GPC, glycerophosphocholine; PCr, phosphocreatine; ATP, adenosine tri-phosphates. * $P < 0.05$.
Nuclear magnetic resonance acquisition and analysis of in vitro and ex vivo samples

Frozen brain tissue samples from the glioma xenografts and U251 cell pellets were extracted using perchloric acid as described previously (47). The neutralized extracts were lyophilized and kept at −80°C until being dissolved in 600 μL of D2O. After final pH adjustments with potassium hydroxide (KOH), in vitro 31P NMR spectra of extracts were acquired using a Bruker spectrometer (Bruker Avance III 600 MHz/54 mm US-Plus) equipped with a multinuclear QCI CryoProbe (Bruker BioSpin GmbH) operating at 243.5 MHz for 31P MRS. High-resolution 31P NMR spectra of the water-soluble metabolites were obtained with proton decoupling during acquisition, a 30° flip angle, 8,192 free induction decays (FID), TR = 4 seconds, spectral width of 14,577 Hz into 36,864 data points in time domain.

31P HR-MAS spectroscopy was carried out using a 600-MHz spectrometer (Bruker Avance III 600 MHz/54 mm US-Plus) equipped with a multinuclear QCI CryoProbe (Bruker BioSpin GmbH). The frozen specimens from human brain tumors were thawed and cut on an ice-pad. Tissue samples were gently loaded into 30-μL disposable inserts filled with 3 μL 2H2O (Sigma-Aldrich GmbH) for the 2H lock. The inserts were then placed into a 4-mm diameter ZrO2 MAS rotor (Bruker BioSpin GmbH). The MAS rotors were spun at 5 kHz and maintained at 4°C to minimize enzymatic activities within the tissue samples.

All in vitro and ex vivo spectra were processed using the Bruker TopSpin V3.0 software (Bruker BioSpin GmbH). The accumulated FIDs were Fourier transformed after application of 3 Hz exponential line broadening. Automatic phase and linear baseline corrections were performed. The GPC peak (at 3.04 ppm) in 31P MR spectra was used as references for chemical shift calibration. Following standard processing, peak areas of phosphorylated metabolites were calculated by peak fitting (PeakFit V4.12; SeaSolve Software Inc.) using a combination of Gaussian–Lorentzian lineshapes (Voigt area). Metabolite concentrations were calculated from peak areas.

Statistical analysis

The difference in the mean value of selected metabolite ratios were statistically assessed using a two-tailed unpaired Mann–Whitney test (Prism GraphPad V 4.03 Software Inc.) and the differences were considered statistically significant for P values < 0.05. All results are represented as mean ± standard deviation (SD).

Results

In vivo 31P MRSI of human glioma xenografts

Tumors in the brain present as hyperintense signal areas on T2-weighted MR images (compare the tumor-containing brain...
in Fig. 2A with the normal brain in Fig. 2B), and we used these images for voxel positioning. The 31P MR spectra of voxels of interest selected from the 3D MRSI dataset of this brain showed resolved resonances for a number of compounds, including ATP, phosphocreatine (PCr), GPC and GPE, inorganic phosphate (Pi), PC, and PE. The 31P-spectral profiles of tumor voxels in all four xenograft models differed from those obtained from voxels in comparable brain areas in non–tumor-bearing animals (compare Fig. 2C with 2D). The relative phosphor signal integrals of choline and ethanolamine compounds were increased, as represented by a significantly higher (PC + GPC + PE + GPE)/ATP ratio for all tumor types ($P < 0.05$; Fig. 2E). This total relative phospholipid content was not different among the tumor models. In addition, a significantly decreased PCr/ATP signal ratio was observed in tumor tissues compared with the healthy mouse brain tissues ($P < 0.05$; Fig. 2F).

Among the four human glioma lines, the E478 tumor exhibited a deviating spectral profile in the 2 to 8 ppm range (Fig. 3A and B). For a quantitative assessment, we first determined for each metabolite resonance its integral normalized to the sum of all phospholipid metabolite resonances (see Fig. 4A and B). This revealed a significant decrease of the PE resonance of the IDH1-mutant E478 xenograft compared with those of the IDH1-WT tumors ($P = 0.003$). A significant increase was observed for the GPC resonance of E478 compared with IDH1-WT tumors ($P = 0.003$). Furthermore, the PC peak of E478 showed a trend for an increase compared with the PC of the other tumors ($P = 0.08$). The GPE resonance did not differ between the tumors. In concordance with the in vivo results, we observed very similar differences between 31P NMR spectra of tumor extracts from IDH1-mutant and wild-type xenografts (Fig. 3B). Again, PE was reduced and GPC increased in E478 extracts compared with those of the other models ($P = 0.004$ and 0.01 respectively; Fig. 4B).

These findings suggest that sensitive biomarkers associated with the presence of IDH1 mutations would be represented by the peak ratios PC/PE, GPC/GPE, GPC/PE, and (PC + GPC)/(PE + GPE). A quantitative assessment of mean in vivo metabolite ratios obtained from all xenograft models showed that these ratios in the E478 xenograft were more than 2-fold higher than those of the other tumors ($P < 0.01$ for all ratios; Fig. 4C). Similar findings were observed for these ratios obtained from spectra of tumor tissue extracts (Fig. 4D).

Phospholipid metabolite ratios involving PE and GPC are similarly altered in cell lines and human glioma with an IDH1 mutation

To investigate how specific the phospholipid metabolite changes are for the IDH1 mutation, we measured in vitro 31P NMR spectra of extracts of a set of U251-MG cell lines overexpressing either wild-type or mutant IDH1 (see Fig. 5A–C). The IDH1-R132H–expressing U251-MG cells showed...
significantly higher PC/PE and GPC/GPE levels than U251-IDHwt (P < 0.001) and U251-MG control cell lines (P < 0.01 for both ratios; Fig. 5B). The U251-R132H also showed a significantly higher (PC + GPC)/(PE + GPE) ratio (P < 0.01; Fig. 5B).

Finally, we investigated if these IDH-mutant specific spectral findings could be validated in human gliomas. For this purpose, we obtained 31P HR-MAS spectra of human glioma specimens. Again, 31P spectral profiles in IDH1-mutant gliomas (Fig. 5D–F) were obtained that were characterized by significant elevations in PC/PE, GPC/GPE, and (PC + GPC)/(PE + GPE) ratios (P < 0.01 for all ratios) as compared with IDH1-WT glioma specimens (Fig. 5E).

Discussion

In this study, we tested the hypothesis that IDH1 mutations affect the phospholipid metabolite profile of tumors by using IDH1-R132H E478 xenografts (41). Our major finding is that gliomas with an IDH1 mutation indeed have a phospholipid profile, which differs from that in gliomas with wild-type IDH1. This is reflected most clearly in relatively higher GPC and lower PE tissue levels, resulting in more than two-fold higher PC/PE, GPC/GPE, and GPC/PE ratios for the IDH1 mutants. 31P nuclear magnetic resonance (NMR) of tumor tissue extracts obtained from the same animals confirmed the in vivo findings. Moreover, 31P NMR of extracts of U251 cells, stably expressing recombinant IDH1-R132H also yielded increased PC/PE and GPC/GPE ratios compared with IDH-WT cells, proving that these changes are related to the IDH1 mutations. 31P HR-MAS of surgical biopsies of human brain tumors identified similar IDH mutation–specific phospholipid metabolite patterns.

An increased GPC level has been detected by mass spectrometry in oligodendroglioma cells expressing the IDH1 mutation as compared with wild-type cells (14), and a positive correlation of GPC with 2HG was found by HR-MAS of ex vivo...
biopsies of low-grade tumors with the mutation (18). Elevated GPC has been associated with grade 2 and 3 gliomas (32–34). Because the majority of these have the IDH1 mutation and elevated GPC is associated with 2-HG (18), this suggests that GPC levels have a causal relationship with the mutation, which is in agreement with our findings. There is much less known for PE. Its resonances in 1H MR spectra are not well resolved. Data from 31P HR-MAS studies of biopsies indicate that PE is decreased in low-grade gliomas (34, 48), but the only report describing PE in relation to the IDH1 mutation indicates a positive correlation with 2-HG, as detected by 1H HR-MAS (18). As 31P NMR of the GBM cell line GS-2 also showed low PE to PC and high GPC to GPE ratios (49), it would be of interest to investigate whether this line also carries the IDH1 mutation.

For all tumors in the mouse brain, we detected a decreased PCr/ATP ratio, which is in line with findings in 31P MRS of human tumors and indicates an altered energy metabolism (37, 50). IDH1 mutations are confined to low-grade and secondary high-grade glioma GBM (4, 5) and confer a relatively good prognosis to patients suffering from these tumors (6, 7, 51). Despite their frequent occurrence, glioma xenografts carrying these mutations are very scarce (41, 52, 53), and in vitro propagation of IDH1-mutated glioma cell lines is challenging (54). Interestingly, and in line with clinical observations, E478 xenografts present with lower proliferation rates than IDHwt counterparts, as established via the Ki67 index, and mice carrying these xenografts have a longer survival time than mice carrying IDHwt xenografts (see Supplementary Materials). A correlation between longer survival, lower Ki67, and lower PC/GPC ratio has also been observed in human patients with glioma (32, 34).

31P MRSI of brain tumors and imaging biomarkers for IDH1 mutation

In this study, we demonstrate that 31P MR spectra of the mouse brain can be obtained with a good signal-to-noise ratio (SNR) by 3D MRSI on a 7T magnet with a dedicated 31P coil. Moreover, at this field strength, resolved signals for individual choline- and ethanolamine-containing metabolites can be detected. This is also possible for human brain at clinical field strengths (1.5–3T) using 1H decoupling (35, 37) and 1H-31P polarization transfer to enhance sensitivity (55, 56). Thus, it is worthwhile to investigate if ratios of PE and GPC signals can be used as biomarkers to assist in the noninvasive metabolic characterization of IDH mutations in patients with glioma brain tumors. This may be used in the assessment of the effect of inhibitors of the mutated IDH enzyme (57).

It is known that human glioma cells with an IDH1 mutation accumulate 2-HG (12–14). We confirmed the presence of 2-HG in our E478 model and in IDH-R132H–overexpressing U251 cells, by both LC/MS (41) and 1D and TOCSY 1H MRS (see Supplementary Materials). This accumulation enables the detection of 2-HG by 1H MRSI, by which patients with this mutation can be identified (15, 17). However, spectral overlap hampers discrimination of 2-HG signals from those of glutamate, glutamate, and gamma-aminobutyric acid, even with peak fitting using prior knowledge and optimal echo times. This may be overcome by spectral editing or 2D 1H MRS, but at the expense of increased complexity and longer scan times or low SNR (17). Moreover, in clinical practice, all these methods to detect 2-HG may fail due to suboptimal field homogeneity. As the resolved detection of 31P signals is less prone to field inhomogeneities, the distinct phospholipid metabolite profiles in IDH1-mutated gliomas may have a role in the identification of this mutation.

Biologic meaning of the change in phospholipid levels in IDH1-mutated glioma

Many enzymes that are involved in lipid biosynthesis depend on appropriate levels of cytosolic NADPH and acetyl-CoA. The activity of IDH1 is an important source for cytosolic NADPH in the brain (ref. 51; see also Fig. 1A) and only for this reason, mutations in this enzyme are expected to affect lipid synthesis. This impact will be augmented by the fact that IDH1 is also involved in the reductive carboxylation of α-KG to isocitrate, especially under hypoxic conditions, isocitrate being the building block for lipids via generation of acetyl- and succinyl-CoA. In mutated IDH1, this activity is lost (11). Evidently, according to this model, IDH1-mutated tumor cells are subject to high metabolic stress, and cells need to adapt to this stress to facilitate survival and tumor progression (58). In a previous report we described that E478 xenografts, despite the IDH1 mutation, do not have significantly decreased α-KG levels and present with densely packed mitochondria. On the basis of these findings, we postulated that IDH1-mutated tumor cells rescue the IDH1 defect by upregulating mitochondrial biosynthesis and concomitantly IDH2 activity, followed by transport of mitochondrial α-KG and NADPH to the cytosol (41). To accommodate mitochondrial biosynthesis, membrane synthesis is required. The altered steady-state levels of some phospholipid metabolites in IDH1-mutated gliomas may be related to rapid incorporation of precursors in phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn), the most abundant membrane compounds (59). An interesting question that directly follows, is whether energy production in IDH1-mutated gliomas is balanced more toward oxidative phosphorylation than to aerobic glycolysis (the Warburg phenomenon; ref. 60). Such considerations may eventually lead to therapeutic handles.

In conclusion, we provide evidence that IDH1 mutations result in distinct alterations in lipid metabolism that can be detected noninvasively by 31P MRSI. These may serve as a complementary biomarker to characterize the metabolic status of IDH1-mutated gliomas during evaluation of anticancer targeted therapies and in tumor diagnosis. Increased availability to higher field strength MR systems (3 and 7 T) and dedicated 31P coils hold promise for clinical translation of the 31P MRSI method. Further research is needed to fully elucidate the roles of PE and GPC, such as their involvement in mitochondrial membrane synthesis.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: M. Esmaeili, W.P. Leenders, A. Heerschap
Development of methodology: M. Esmaeili, W.P. Leenders, A. Heerschap
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.) M. Esmaeili, B.C. Hamans, A.C. Navis, R. van Hoorsen Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis) M. Esmaeili, B.C. Hamans, A.C. Navis, T.F. Batten, W.F. Leenders, A. Heerschap Writing, review, and/or revision of the manuscript: M. Esmaeili, B.C. Hamans, A.C. Navis, T.F. Batten, I.S. Grimbistad, W.P. Leenders, A. Heerschap Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases) M. Esmaeili, I.S. Grimbistad, A. Heerschap Study supervision: M. Esmaeili, T.F. Batten, I.S. Grimbistad, W.P. Leenders, A. Heerschap

References

Acknowledgments

The authors thank A. Veltien and J. van der Laak for technical assistance with MR measurements and KS400 software, respectively, and Marieke Willensme for generating the U251-cell lines. The authors also thank Jeron Mooren and Bianca Lemmers van de Weem for their assistance during the animal experiments.

Grant Support

This research was also supported by NWO investment grants 9106021 and BIG (VISTA).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received January 6, 2014; revised April 28, 2014; accepted May 26, 2014; published OnlineFirst July 8, 2014.
Subtyping of IDH1-Mutated Gliomas by 31P MRS

IDH1 R132H Mutation Generates a Distinct Phospholipid Metabolite Profile in Glioma

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-14-0008

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2014/07/21/0008-5472.CAN-14-0008.DC1

Cited articles
This article cites 60 articles, 15 of which you can access for free at:
http://cancerres.aacrjournals.org/content/74/17/4898.full.html#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
/content/74/17/4898.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.