Cancer Research

Table of Contents

October 1, 2014 • Volume 74 • Number 19

BREAKING ADVANCES

5349 Highlights from Recent Cancer Literature

REVIEW

5351 Crosstalk between microRNA30a/b/c/d/e-5p and the Canonical Wnt Pathway: Implications for Multiple Myeloma therapy
Jian-Jun Zhao and Ruben D. Carrasco

MEETING REPORT

5359 Biomimetic Tissue–Engineered Systems for Advancing Cancer Research: NCI Strategic Workshop Report
Teresa K. Schuessler, Xi Yan Chen, Huinan Chen, Kyungmin Ji, Kyung Min Park, Alireza Roshansorkh, Pallavi Sethi, Archana Thakur, Xi Tian, Aranzazu Villasante, Ioannis K. Zervantonakis, Nicole M. Moore, Larry A. Nagahara, and Nastaran Z. Kuhn

PRIORITY REPORTS

5364 Aurora-A Inhibition Offers a Novel Therapy Effective against Intracranial Glioblastoma
James R. Van Brocklyn, Jeffrey Wojton, Walter H. Meisen, David A. Killough, Jeffery A. Ecsedy, Balveen Kaur, and Norman L. Lehman
Précis: These results offer preclinical proof-of-concept for a mitotic kinase inhibitor as a new therapeutic for the most deadly type of brain cancer.

5377 Oral Interleukin-10 Alleviates Polyposis via Neutralization of Pathogenic T-Regulatory Cells
Allen Y. Chung, Qingsheng Li, Sarah J. Blair, Magdia De Jesus, Kristen L. Dennis, Charles LeVea, Jin Yao, Yijun Sun, Thomas F. Conway, Lauren P. Virtuoso, Nicholas G. Battaglia, Stacia Furtado, Edith Mathiowitz, Nicholas J. Mantis, Khashayarsha Khazaie, and Nejat K. Egitmez
Précis: Striking findings suggest that IL10 might be administered orally as a microparticle formulation that can be used to reprogram the inflammatory state of intestinal immunity in colon cancer–prone patients to reduce their risk of cancer development.

5386 Dynamics of Leukemia Stem-like Cell Extinction in Acute Promyelocytic Leukemia
Benjamin Werner, Robert E. Gallagher, Elisabeth M. Paietta, Mark R. Litzow, Martin S. Tallman, Peter H. Wiernik, James L. Slack, Cheryl L. Willman, Zhuxin Sun, Arne Traulsen, and David Dingli
Précis: By combining a mathematical model of hematopoiesis with data from a large randomized trial of acute promyelocytic leukemia, this study offers the first determination of the average duration of therapy required to eliminate all stem-like cells in a human tumor.

5391 Molecular Changes in Lobular Breast Cancers in Response to Endocrine Therapy
Précis: Molecular responses to aromatase inhibition are similar in lobular and ductal breast tumors, despite clear histologic differences before and after treatment, with implications for the use of aromatase inhibitors in breast cancer treatment.

5397 Sentinel Lymph Node Biopsy Revisited: Ultrasound-Guided Photoacoustic Detection of Micrometastases Using Molecularly Targeted Plasmonic Nanosensors
Geoffrey P. Luke, Jeffrey N. Myers, Stanislav Y. Emelianov, and Konstantin V. Sokolov
Précis: This important study describes a rapid, noninvasive method to detect micrometastases in sentinel lymph nodes, providing an alternative to traditional sentinel node analyses that are widely used to stage resectable tumors.

INTEGRATED SYSTEMS AND TECHNOLOGIES
Cryotherapy with Concurrent CpG Oligonucleotide Treatment Controls Local Tumor Recurrence and Modulates HER2/neu Immunity

Précis: The liberation of tumor-associated antigens by freezing tumors in situ cooperates with peritumoral CpG injection to increase innate and adaptive immunity, leveraging a minimally invasive treatment for patients who are not candidates for surgical resection.

Paclitaxel Therapy Promotes Breast Cancer Metastasis in a TLR4-Dependent Manner

Précis: These provocative findings suggest that expression of the Toll-like receptor TLR4 on cancer cells changes their systemic reaction to treatment with paclitaxel, a drug used widely in the oncology clinic, promoting risks of future drug resistance and metastatic disease.

Novel Paracrine Modulation of Notch–DLL4 Signaling by Fibulin-3 Promotes Angiogenesis in High-Grade Gliomas

Précis: This study focuses on a proangiogenic signal that mediates anti-VEGF resistance in aggressive brain tumors, with implications on how to improve antiangiogenic therapy in this setting, where anti-VEGF treatments are widely used clinically but with little frank efficacy.

Gangliosides Drive the Tumor Infiltration and Function of Myeloid-Derived Suppressor Cells

Précis: This important article suggests that immunosuppressive gangliosides, a type of glycolipid shed by many human tumors, function to attract MDSC into the tumor environment, suggesting a broadly applicable strategy to thwart this common mechanism of immune escape.

Acquired Resistance to Fractionated Radiotherapy Can Be Overcome by Concurrent PD-L1 Blockade

Précis: The benefits of fractionated radiotherapy in cancer patients might be improved greatly by blocking an adaptive mechanism of immunosuppression that limits therapeutic efficacy, with immediate implications for clinical evaluation of a new type of combination immunoradiotherapy.

Complex Formation and Function of Estrogen Receptor α in Transcription Requires RIP140

Précis: A transcriptional coregulator involved in energy homeostasis, ovulation, and mammary gland development is found to play a critical role in breast cancer and the response to tamoxifen treatment.

CDC42 Inhibition Suppresses Progression of Incipient Intestinal Tumors

Précis: A Rho family small GTPase activated in early-stage APC/b-catenin–driven colorectal cancers may offer a biomarker and therapeutic target to prevent progression.

EFA6B Antagonizes Breast Cancer

Précis: A regulator of tight junction and apico-basal polarity in breast cancer cells prevents EMT, and its loss is correlated with the aggressive behavior of triple-negative and basal-like breast cancers, with implications for new therapeutic targets in these largely intractable diseases.
The SIRT1/HIF2α Axis Drives Reductive Glutamine Metabolism under Chronic Acidosis and Alters Tumor Response to Therapy
Cyril Corbet, Nihed Draoui, Florence Polet, Adan Pinto, Xavier Drozak, Olivier Riant, and Olivier Feron

Precis: While extracellular tumor acidosis is largely described as the main consequence of the high glycolytic flux in cancer cells, the current study demonstrates that, in turn, tumor cells may shift their metabolism toward glutamine to adapt to acidosis.

PAK1 Tyrosine Phosphorylation Is Required to Induce Epithelial–Mesenchymal Transition and Radioresistance in Lung Cancer Cells
EunGi Kim, HyeSook Youn, Taewoo Kwon, Beomseok Son, JiHoon Kang, Hee Jung Yang, Ki Moon Seong, Wanyeon Kim, and BuHyun Youn

Precis: These results offer a preclinical rationale for the use of JAK2 inhibitors to radiosensitize lung adenocarcinomas based on blockade of a PAK1 kinase-dependent pathway that mediates EMT and radioresistance in this setting.

Transcriptional Dynamics in Colorectal Carcinogenesis: New Insights into the Role of c-Myc and miR17 in Benign to Cancer Transformation
Eyael Ben-David, Assaf C. Bester, Sagiv Shifman, and Batsheva Kerem

Precis: This study sheds light on the temporal process of how neoplastic transformation occurs in normal colon tissue cells, with new information on the roles of c-Myc and miR-17 in the development of colorectal cancer.

Uncontrolled Inflammation Induced by AEG-1 Promotes Gastric Cancer and Poor Prognosis
Guanghua Li, Zhao Wang, Jinning Ye, Xinhua Zhang, Hui Wu, Jianjun Peng, Wu Song, Chuangqi Chen, Shirong Cai, Yulong He, and Jianbo Xu

Precis: An oncogenic protein also known as the metastasis-associated protein MTDH is found to function in a vicious positive feedback loop of TLR4–NF-κB inflammatory signaling, with implications for therapeutic strategies to limit cancer progression.

Antitumor Efficacy of a Bispecific Antibody That Targets HER2 and Activates T Cells
Teemu T. Junttila, Ji Li, Jennifer Johnston, Maria Hristopoulou, Robyn Clark, Diego Ellerman, Bu-Er Wang, Yijin Li, Mary Mathieu, Guangmin Li, Judy Young, Elizabeth Luis, Gail Lewis Phillips, Eric Stefanich, Christoph Spiess, Andrew Polson, Bryan Irving, Justin M. Scheer, Melissa R. Junttila, Mark S. Dennis, Robert Kelley, Klara Totpal, and AllenEbens

Precis: These results highlight a new type of potent immunotherapy for HER2+ breast cancer, which targets HER2, delivers T cells to HER2+ tumors, and can be further leveraged with PD-L1 antibody to help defeat tumoral immune escape, engendering more durable therapeutic responses.

EGFR Blockade Enriches for Lung Cancer Stem–like Cells through Notch3-Dependent Signaling
Rajeswara Rao Arasada, Joseph M. Amann, Mohammad A. Rahman, Stacey S. Huppert, and David P. Carbone

Precis: These findings may explain why some studies of the EGFR inhibitor erlotinib appeared to worsen survival in early-stage lung cancer patients, implicating a novel combination regimen to overcome this effect.

Translesion Polymerase η Is Upregulated by Cancer Therapeutics and Confers Anticancer Drug Resistance
Maja T. Tomicic, Dortho Aasland, Steffen C. Naumann, Ruth Meise, Christina Barkhausen, Bernd Kaina, and Markus Christmann

Precis: Induction of a particular DNA repair polymerase by DNA-crosslinking drugs limits their cancer cell killing activity, with implications for how to best use these types of drugs.
SIX1 Promotes Tumor Lymphangiogenesis by Coordinating TGFβ Signals That Increase Expression of VEGF-C
Dan Liu, Li Li, Xiao-Xue Zhang, Dong-Yi Wan, Bi-Xin Xi, Zheng Hu, Wen-Cheng Ding, Da Zhu, Xiao-Li Wang, Wei Wang, Zuo-Hua Feng, Hui Wang, Ding Ma, and Qing-Lei Gao

Précis: These findings suggest mechanistic insights into the formation of tumoral lymph vessels that can drain metastatic cells to distant sites, with possible implications for blocking this process as a therapeutic strategy.

A Comprehensive DNA Methylation Profile of Epithelial-to-Mesenchymal Transition

Précis: An understanding of how global DNA methylation patterns are altered by EMT in cancer may more deeply illuminate common pathogenic processes and broad-based prognostic markers.

Trim32 Facilitates Degradation of MYCN on Spindle Poles and Induces Asymmetric Cell Division in Human Neuroblastoma Cells
Hideki Izumi and Yasuhiko Kaneko

Précis: These results offer important insights into asymmetric cell division, a special type of cell division in stem cells also found to occur in cancer stem-like cells, adding to the ongoing discussion of what precisely defines "stemness" in cancer cells.

Androgen Receptor Is the Key Transcriptional Mediator of the Tumor Suppressor SPOP in Prostate Cancer
Chuandong Geng, Kimal Rajapakshe, Shrijal S. Shah, John Shou, Vijay Kumar Eedunuri, Christopher Foley, Warren Fiskus, Mahitha Rajendran, Sue Anne Chew, Martin Zimmermann, Richard Bond, Bin He, Cristian Coarfa, and Nicholas Mitsiades

Précis: These results offer a mechanistic explanation for understanding the basis of the tumor suppressor activity of an E3 ubiquitin ligase adapter that is mutated in ~15% of human prostate cancers.

NQO1 Suppresses NF-κB–p300 Interaction to Regulate Inflammatory Mediators Associated with Prostate Tumorigenesis
Dinesh Thapa, Peng Meng, Robie G. Bedolla, Robert L. Reddick, Addanki P. Kumar, and Rita Ghosh

Précis: Genetic findings suggest that a pivotal regulator of redox status can promote androgen independence in prostate cancer cells by helping establish a self-reinforcing inflammatory microenvironment.

PRMT7 Induces Epithelial-to-Mesenchymal Transition and Promotes Metastasis in Breast Cancer
Ruosi Yao, Hao Jiang, Yuhui Ma, Liping Wang, Lin Wang, Juan Du, Pingfu Hou, Yanyan Gao, Li Zhao, Guannan Wang, Yu Zhang, Dong-Xu Liu, Baiqiu Huang, and Jun Lu

Précis: These results define a protein arginine methyltransferase as an inducer of breast cancer metastasis, with potential implications for the development of a targeted therapeutic to treat highly invasive breast cancers.

IGF1R Inhibition in Mammary Epithelia Promotes Canonical Wnt Signaling and Wnt1-Driven Tumors
Lauren M. Rota, Lidia Albanito, Marcus E. Shin, Corey L. Goyeneche, Sain Shushanov, Emily J. Gallagher, Derek LeRoith, Deborah A. Lazzarino, and Teresa L. Wood

Précis: Although IGF1R inhibitors are being considered for treatment of basal-like breast cancers, the results of this preclinical study suggest that attenuating IGF1R in the context of activated Wnt signaling leads to negative outcomes in this disease subtype, with possible implications for attendant clinical cautions.
ABOUT THE COVER

Oral administration of BSA-FITC-loaded polyactic acid microparticles (green) prepared via phase inversion nanoencapsulation (PIN) resulted in rapid uptake (within 15 minutes) and persistence (for at least 24 hours) in the Peyer’s patches (PP) of 10 week-old APC^{min/}⁺ mice (magenta, dendritic cells; blue, B-cells). Uptake in the PP was followed by trafficking of the particles to the mesenteric lymph nodes. Particles could not be visualized in the villi or the enterocytes of the small intestine or in the colon. Oral IL-10 PIN particles ameliorated intestinal polyposis and systemic symptoms of disease in the APC^{min/}⁺ mice via neutralization of CD4⁺ Foxp3⁺ ROR⁺ IL-17⁺ pathogenic T-regulatory cells found in the immune structures of the gastrointestinal tract. For details, see article by Chung and colleagues on page 5377.