Table of Contents

January 15, 2014 • Volume 74 • Number 2

BREAKING ADVANCES

399 Highlights from Recent Cancer Literature

REVIEWS

401 Urinary Tobacco Smoke–Constituent Biomarkers for Assessing Risk of Lung Cancer
Jian-Min Yuan, Lesley M. Butler, Irina Stepanov, and Stephen S. Hecht

412 ERKs in Cancer: Friends or Foes?
Xavier Deschênes-Simard, Filippos Kottakis, Sylvain Meloche, and Gerardo Ferbeyre

420 Bookmarking Target Genes in Mitosis: A Shared Epigenetic Trait of Phenotypic Transcription Factors and Oncogenes?
Sayyed K. Zaidi, Rodrigo A. Grandy, Cesar Lopez-Camacho, Martin Montecino, Andre J. van Wijnen, Jane B. Lian, Janet L. Stein, and Gary S. Stein

INTEGRATED SYSTEMS AND TECHNOLOGIES

426 Bridging Population and Tissue Scale Tumor Dynamics: A New Paradigm for Understanding Differences in Tumor Growth and Metastatic Disease
Jill Gallaher, Aravind Babu, Sylvia Plevritis, and Alexander R.A. Anderson

MICROENVIRONMENT AND IMMUNOLOGY

436 CCL2/CCR2-Dependent Recruitment of Functional Antigen-Presenting Cells into Tumors upon Chemotherapy
Yuting Ma, Stephen R. Mattarollo, Sandy Adjemian, Heng Yang, Laetitia Aymeric, Dalil Hannani, João Paulo Portela Catani, Helene Duret, Michele W.L. Teng, Oliver Kepp, Yidan Wang, Antonella Sistigu, Joachim L. Schultze, Gautier Stoll, Lorenzo Galluzzi, Laurence Zitvogel, Mark J. Smyth, and Guido Kroemer

MOLECULAR AND CELLULAR PATHOBIOLOGY

446 Immune Chaperone gp96 Drives the Contributions of Macrophages to Inflammatory Colon Tumorigenesis
Crystal Morales, Saleh Rachidi, Feng Hong, Shaoli Sun, Xinxhou Ouyang, Caroline Wallace, Yongliang Zhang, Elizabeth Garret-Mayer, Jennifer Wu, Bei Liu, and Zihai Li

460 MUC1 in Macrophage: Contributions to Cigarette Smoke–Induced Lung Cancer
Xiuling Xu, Mabel T. Padilla, Bilan Li, Alexandra Wells, Kosuke Kato, Carmen Tellez, Steven A. Belinsky, Kwang Chul Kim, and Yong Lin

471 Defective TGF-β Signaling in Bone Marrow–Derived Cells Prevents Hedgehog-Induced Skin Tumors
Qi peng Fan, Dongsheng Gu, Hailan Liu, Ling Yang, Xiaoli Zhang, Mervin C. Yoder, Mark H. Kaplan, and Jingwu Xie

MICROENVIRONMENT AND IMMUNOLOGY

484 Cyclophilin B Supports Myc and Mutant p53-Dependent Survival of Glioblastoma Multiforme Cells
Jae Won Choi, Mark A. Schroeder, Jann N. Sarkaria, and Richard J. Bram

Précis: By using a macrophage-specific gene knockout mouse, this important study reveals how tumor-associated macrophages not only orchestrate local inflammation but also cell maturation to drive the development of colon cancer.

Précis: These results shed light on the mechanisms of inflammation-associated lung carcinogenesis, showing how cigarette smoke promotes contributions from lung macrophages in the tissue microenvironment to promote lung cancer.

Précis: Dysregulation of the Hedgehog pathway in cancer cells drives the formation of a supportive microenvironment, by stimulating a core mechanism of support for the development of myeloid-derived suppressor cells.

Précis: These results define the protein chaperone cyclophilin B as a promising molecular target for treatment of glioblastoma multiforme, with immediate clinical implications for repurposing the approved drug cyclosporin as a potential therapeutic to treat this aggressive malignancy.
547 IRP2 Regulates Breast Tumor Growth
Wei Wang, Zhiyong Deng, Heather Hatcher, Lance D. Miller, Xiaomin Di, Lia Tesfay, Guangchao Sui, Ralph B. D’Agostino Jr, Frank M. Torti, and Suzy V. Torti

Precis: These results reveal a new pathway of iron dysregulation in breast cancer and identify IRP2, a master regulator of intracellular iron homeostasis, as an important driver of breast cancer growth.

558 Identification of a Cyclin D1 Network in Prostate Cancer That Antagonizes Epithelial–Mesenchymal Restraining
Xiaoming Ju, Mathew C. Casimiro, Michael Gormley, Hui Meng, Xuanmao Jiao, Sanjay Katibay, Marco Crusario, Ke Chen, Min Wang, Andrew A. Quong, Michael P. Lisanti, Adam Ertel, and Richard G. Pestell

Precis: This study reveals a novel function for cyclin D1 in mediating the expansion of prostate stem cells that contribute to prostate cancer.

560 CUL4A Induces Epithelial–Mesenchymal Transition and Promotes Cancer Metastasis by Regulating ZEB1 Expression
Yunshan Wang, Mingxin Wen, Yongwon Kwon, Yangyang Xu, Yueyoung Li, Pengju Zhang, Xiuquan He, Qin Wang, Yurong Huang, Kuang-Yu Jen, Mark A. Labarge, Liang You, Scott C. Kogan, Joe W. Gray, Jianhua Mao, and Guangwei Wei

Precis: These findings suggest a pivotal role for the oncogenic ubiquitin ligase CUL4A in regulating the metastatic behavior of breast cancer cells, with implications for therapeutic targeting of the pathway it regulates.

575 p53-Induced miR-15a/16-1 and APO4 Form a Double-Negative Feedback Loop to Regulate Epithelial–Mesenchymal Transition and Metastasis in Colorectal Cancer
Lei Shi, Rene Jackstadt, Helge Siemens, Huihui Li, Thomas Kirchner, and Heiko Hermeking

Precis: These mechanistic study sheds new light on opposing circuitries of control for mesenchymal and epithelial states in cancer cells, the balance of which may influence invasive migration and metastasis.

586 Preclinical Therapeutic Efficacy of a Novel Pharmacologic Inducer of Apoptosis in Malignant Peripheral Nerve Sheath Tumors
Vincent Chau, S. Kyun Lim, Wei Mo, Chiachi Liu, Amish J. Patel, Renée M. McKay, Shuguang Wei, Bruce A. Posner, Jef K. De Brabander, Noelle S. Williams, Luis F. Parada, and Lu Q. Le

Precis: Using a robust new model of malignant peripheral nerve sheath tumors that recapitulates features of the human malignancy, this study identified a novel proapoptotic small molecule that inhibits tumor cell growth.

597 MDR1 Synonymous Polymorphisms Alter Transporter Specificity and Protein Stability in a Stable Epithelial Monolayer
King Leung Fung, James Pan, Shinobu Ohnuma, Paul E. Lund, Jessica N. Pixley, Chaya Kimchi-Sarfaty, Suresh V. Ambudkar, and Michael M. Gottesman

Precis: Synonymous "silent" polymorphisms in the multiple drug resistance gene can nonetheless alter the function of the gene product and drive chemotherapeutic resistance.
FGFR1–WNT–TGF-β Signaling in Prostate Cancer Mouse Models Recapitulates Human Reactive Stroma
Julienne L. Carstens, Payam Shahi, Susan Van Tsang, Billie Smith, Chad J. Creighton, Yiqun Zhang, Amber Seamans, Mamatha Seshamangadi, Indira Vedula, Jonathan M. Levitt, Michael M. Ittmann, David R. Rowlcy, and David M. Spencer
Précis: Targeting the reactive stroma in aggressive prostate adenocarcinoma may generate a two-pronged attack that is more efficacious, by attacking cancer cells as well as the critical stromal tissue driving their outgrowth.

PPARα Activation Can Help Prevent and Treat Non–Small Cell Lung Cancer
Nataliya Skrypnyk, Xiwu Chen, Wen Hu, Yan Su, Stacey Mont, Shilin Yang, Mahesha Gangadhariah, Shouzuo Wei, John R. Falck, Jawahar Lal Jat, Roy Zent, Jorge H. Capdevila, and Ambra Pozzi
Précis: This important study provides a preclinical proof-of-concept for administering clinically approved PPARα agonists to treat lung cancer, with immediate implications to reposition an existing drug treatment that is well tolerated and may be highly efficacious in this setting.

Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T-Cell Rejection Function in Tumors—Letter
David C. Binder and Hans Schreiber

Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T-Cell Rejection Function in Tumors—Response
Jaikumar Duraiswamy, Gordon J. Freeman, and George Coukos

Editors’ Viewpoint—Response
Mario P. Colombo and George C. Prendergast

Correction: A Single-Nucleotide Substitution Mutator Phenotype Revealed by Exome Sequencing of Human Colon Adenomas

Correction: Neuropilin-2 Is Upregulated in Lung Cancer Cells during TGF-β1–Induced Epithelial–Mesenchymal Transition

ABOUT THE COVER
Anthracylene-based chemotherapy promotes the recruitment of CD11c⁺ (green) CD86⁺ (red) dendritic cells in close proximity to Caspase 3a⁺ (magenta) dying tumor cells. This process relies on "eat me" signal ATP and CCL2/CCR2 chemotactic axis. For details, see the article by Ma and colleagues on page 436 of this issue.
Cancer Research

74 (2)

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/74/2

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/74/2.
Click on “Request Permissions” which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.