Table of Contents

Breaking Advances

- **399** Highlights from Recent Cancer Literature

Reviews

- **401** Urinary Tobacco Smoke–Constituent Biomarkers for Assessing Risk of Lung Cancer

 Jian-Min Yuan, Lesley M. Butler, Irina Stepanov, and Stephen S. Hecht

- **412** ERKs in Cancer: Friends or Foes?

 Xavier Deschênes-Simard, Filippos Kottakis, Sylvain Meloche, and Gerardo Ferbeyre

- **420** Bookmarking Target Genes in Mitosis: A Shared Epigenetic Trait of Phenotypic Transcription Factors and Oncogenes?

 Sayyed K. Zaidi, Rodrigo A. Grandy, Cesar Lopez-Camacho, Martin Montecino, Andre J. van Wijnen, Jane B. Lian, Janet L. Stein, and Gary S. Stein

Integrated Systems and Technologies

- **426** Bridging Population and Tissue Scale Tumor Dynamics: A New Paradigm for Understanding Differences in Tumor Growth and Metastatic Disease

 Jill Gallaher, Aravind Babu, Sylvia Plevritis, and Alexander R.A. Anderson

Microenvironment and Immunology

- **436** CCL2/CCR2-Dependent Recruitment of Functional Antigen-Presenting Cells into Tumors upon Chemotherapy

 Yuting Ma, Stephen R. Mattarollo, Sandy Adjemian, Heng Yang, Laetitia Aymeric, Dalil Hannani, João Paulo Portela Catani, Helene Duret, Michele W.L. Teng, Oliver Kepp, Yidan Wang, Antonella Sistigu, Joachim L. Schultze, Gautier Stoll, Lorenzo Galluzzi, Laurence Zitvogel, Mark J. Smyth, and Guido Kroemer

Molecular and Cellular Pathobiology

- **446** Immune Chaperone gp96 Drives the Contributions of Macrophages to Inflammatory Colon Tumorigenesis

 Crystal Morales, Saleh Rachidi, Feng Hong, Shaoli Sun, Xinshou Ouyang, Caroline Wallace, Yongliang Zhang, Elizabeth Garret-Mayer, Jennifer Wu, Bei Liu, and Zihai Li

 Précis: By using a macrophage-specific gene knockout mouse, this important study reveals how tumor-associated macrophages not only orchestrate local inflammation but also cell maturation in order to drive the development of colon cancer.

- **460** MUC1 in Macrophage: Contributions to Cigarette Smoke–Induced Lung Cancer

 Xiuling Xu, Mabel T. Padilla, Bilan Li, Alexandra Wells, Kosuke Kato, Carmen Tellez, Steven A. Belinsky, Kwang Chul Kim, and Yong Lin

 Précis: These results shed light on the mechanisms of inflammation-associated lung carcinogenesis, showing how cigarette smoke promotes contributions from lung macrophages in the tissue microenvironment to promote lung cancer.

- **471** Defective TGF-β Signaling in Bone Marrow–Derived Cells Prevents Hedgehog-Induced Skin Tumors

 Qipeng Fan, Dongsheng Gu, Hailan Liu, Ling Yang, Xiaoli Zhang, Mervin C. Yoder, Mark H. Kaplan, and Jingwu Xie

 Précis: Dysregulation of the Hedgehog pathway in cancer cells drives the formation of a supportive microenvironment, by stimulating a core mechanism of support for the development of myeloid-derived suppressor cells.

- **484** Cyclophilin B Supports Myc and Mutant p53-Dependent Survival of Glioblastoma Multiforme Cells

 Jae Won Choi, Mark A. Schroeder, Jann N. Sarkaria, and Richard J. Bram

 Précis: These results define the protein chaperone cyclophilin B as a promising molecular target for treatment of glioblastoma multiforme, with immediate clinical implications for repositioning the approved drug cyclosporin as a potential therapeutic to treat this aggressive malignancy.
Circadian Regulation of mTOR by the Ubiquitin–p53-Induced miR-15a/16-1 and AP4 Form a CUL4A Induces Epithelial–Mesenchymal Transition and Promotes Cancer Metastasis by Regulating ZEB1 Expression

CUL4A Induces Epithelial–Mesenchymal Transition and Promotes Cancer Metastasis by Regulating ZEB1 Expression

p53-Induced miR-15a/16-1 and AP4 Form a Double-Negative Feedback Loop to Regulate Epithelial–Mesenchymal Transition and Metastasis in Colorectal Cancer

Therapeutic, Targets, and Chemical Biology

Circadian Regulation of mTOR by the Ubiquitin Pathway in Renal Cell Carcinoma

Blocking eIF5A Modification in Cervical Cancer Cells Alters the Expression of Cancer-Related Genes and Suppresses Cell Proliferation

Novel Mechanism of MDA-7/IL-24 Cancer-Specific Apoptosis through SARI Induction

Small Molecule Agonists of PPAR-γ Exert Therapeutic Effects in Esophageal Cancer

Preclinical Therapeutic Efficacy of a Novel Pharmacologic Inducer of Apoptosis in Malignant Peripheral Nerve Sheath Tumors

MDR1 Synonymous Polymorphisms Alter Transporter Specificity and Protein Stability in a Stable Epithelial Monolayer

Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>497</td>
<td>IRP2 Regulates Breast Tumor Growth</td>
</tr>
<tr>
<td>508</td>
<td>Identification of a Cyclin D1 Network in Prostate Cancer That Antagonizes Epithelial–Mesenchymal Restraint</td>
</tr>
<tr>
<td>520</td>
<td>CUL4A Induces Epithelial–Mesenchymal Transition and Promotes Cancer Metastasis by Regulating ZEB1 Expression</td>
</tr>
<tr>
<td>532</td>
<td>p53-Induced miR-15a/16-1 and AP4 Form a Double-Negative Feedback Loop to Regulate Epithelial–Mesenchymal Transition and Metastasis in Colorectal Cancer</td>
</tr>
<tr>
<td>543</td>
<td>Circadian Regulation of mTOR by the Ubiquitin Pathway in Renal Cell Carcinoma</td>
</tr>
<tr>
<td>552</td>
<td>Blocking eIF5A Modification in Cervical Cancer Cells Alters the Expression of Cancer-Related Genes and Suppresses Cell Proliferation</td>
</tr>
<tr>
<td>558</td>
<td>Novel Mechanism of MDA-7/IL-24 Cancer-Specific Apoptosis through SARI Induction</td>
</tr>
<tr>
<td>563</td>
<td>Small Molecule Agonists of PPAR-γ Exert Therapeutic Effects in Esophageal Cancer</td>
</tr>
<tr>
<td>575</td>
<td>Preclinical Therapeutic Efficacy of a Novel Pharmacologic Inducer of Apoptosis in Malignant Peripheral Nerve Sheath Tumors</td>
</tr>
<tr>
<td>586</td>
<td>Small Molecule Agonists of PPAR-γ Exert Therapeutic Effects in Esophageal Cancer</td>
</tr>
<tr>
<td>598</td>
<td>MDR1 Synonymous Polymorphisms Alter Transporter Specificity and Protein Stability in a Stable Epithelial Monolayer</td>
</tr>
</tbody>
</table>
TUMOR AND STEM CELL BIOLOGY

609 FGFR1–WNT–TGF-β Signaling in Prostate Cancer Mouse Models Recapitulates Human Reactive Stroma
Julienne L. Carstens, Payam Shahi, Susan Van Tsang, Billie Smith, Chad J. Creighton, Yiqun Zhang, Amber Seamans, Mamatha Seshagamagari, Indira Vedula, Jonathan M. Levitt, Michael M. Ittmann, David R. Rowley, and David M. Spencer

Précis: Targeting the reactive stroma in aggressive prostate adenocarcinoma may generate a two-pronged attack that is more efficacious, by attacking cancer cells as well as the critical stromal tissue driving their outgrowth.

621 PPARγ Activation Can Help Prevent and Treat Non–Small Cell Lung Cancer
Nataliya Skrypnyk, Xiwu Chen, Wen Hu, Yan Su, Stacey Mont, Shilin Yang, Mahesha Gangadhariah, Shouzuo Wei, John R. Falck, Jawahar Lal Jat, Roy Zent, Jorge H. Capdevila, and Ambra Pozzi

Précis: This important study provides a preclinical proof-of-concept for administering clinically approved PPARγ agonists to treat lung cancer, with immediate implications to reposition an existing drug treatment that is well tolerated and may be highly efficacious in this setting.

LETTERS TO THE EDITOR

632 Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T-Cell Rejection Function in Tumors—Letter
David C. Binder and Hans Schreiber

633 Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T-Cell Rejection Function in Tumors—Response
Jaikumar Duraiswamy, Gordon J. Freeman, and George Coukos

635 Editors’ Viewpoint—Response
Mario P. Colombo and George C. Prendergast

CORRECTIONS

636 Correction: A Single-Nucleotide Substitution Mutator Phenotype Revealed by Exome Sequencing of Human Colon Adenomas

637 Correction: Neuropilin-2 Is Upregulated in Lung Cancer Cells during TGF-β1–Induced Epithelial–Mesenchymal Transition

ABOUT THE COVER

Anthracycline-based chemotherapy promotes the recruitment of CD11c+ (green) CD86+ (red) dendritic cells in close proximity to Caspase 3a+ (magenta) dying tumor cells. This process relies on “eat me” signal ATP and CCL2/CCR2 chemotactic axis. For details, see the article by Ma and colleagues on page 436 of this issue.
74 (2)

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/74/2

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.