BREAKING ADVANCES

399 Highlights from Recent Cancer Literature

REVIEWS

401 Urinary Tobacco Smoke–Constituent Biomarkers for Assessing Risk of Lung Cancer
Jian-Min Yuan, Lesley M. Butler, Irina Stepanov, and Stephen S. Hecht

412 ERKs in Cancer: Friends or Foes?
Xavier Deschênes-Simard, Filippos Kottakis, Sylvain Meloche, and Gerardo Ferbeyre

420 Bookmarking Target Genes in Mitosis: A Shared Epigenetic Trait of Phenotypic Transcription Factors and Oncogenes?
Sayyed K. Zaidi, Rodrigo A. Grandy, Cesar Lopez-Camacho, Martin Montecino, Andre J. van Wijnen, Jane B. Lian, Janet L. Stein, and Gary S. Stein

INTEGRATED SYSTEMS AND TECHNOLOGIES

426 Bridging Population and Tissue Scale Tumor Dynamics: A New Paradigm for Understanding Differences in Tumor Growth and Metastatic Disease
Jill Gallaher, Aravind Babu, Sylvia Plevritis, and Alexander R.A. Anderson
Précis: Vascular response is a primary cause of the differences in rates of tumor growth and metastatic disease in two of the most common cancers.

MICROENVIRONMENT AND IMMUNOLOGY

436 CCL2/CCR2-Dependent Recruitment of Functional Antigen-Presenting Cells into Tumors upon Chemotherapy
Yuting Ma, Stephen R. Mattarollo, Sandy Adjemian, Heng Yang, Laetitia Aymeric, Dalil Hannani, João Paulo Portela Catani, Helene Duret, Michele W.L. Teng, Oliver Kepp, Yidan Wang, Antonella Sistigu, Joachim L. Schultze, Gautier Stoll, Lorenzo Galluzzi, Laurence Zitvogel, Mark J. Smyth, and Guido Kroemer
Précis: These findings illustrate the importance of CCL2/CCR2 signaling pathways for immunogenic chemotherapeutics to elicit their antitumor effects, suggesting that CCL2/CCR2-targeting strategies being tested clinically may actually worsen clinical outcomes in cancer patients.

446 Immune Chaperone gp96 Drives the Contributions of Macrophages to Inflammatory Colon Tumorigenesis
Crystal Morales, Saleh Rachidi, Feng Hong, Shao Li, Xinshou Ouyang, Caroline Wallace, Yongliang Zhang, Elizabeth Garret-Mayer, Jennifer Wu, Bei Liu, and Zihai Li
Précis: By using a macrophage-specific gene knockout mouse, this important study reveals how tumor-associated macrophages not only orchestrate local inflammation but also cell mutagenesis to drive the development of colon cancer.

460 MUC1 in Macrophage: Contributions to Cigarette Smoke–Induced Lung Cancer
Xiuling Xu, Mabel T. Padilla, Bilan Li, Alexandria Wells, Kosuke Kato, Carmen Tellez, Steven A. Belinsky, Kwang Chul Kim, and Yong Lin
Précis: These results shed light on the mechanisms of inflammation-associated lung carcinogenesis, showing how cigarette smoke promotes contributions from lung macrophages in the tissue microenvironment to promote lung cancer.

471 Defective TGF-β Signaling in Bone Marrow–Derived Cells Prevents Hedgehog-Induced Skin Tumors
Qipeng Fan, Dongsheng Gu, Hailan Liu, Ling Yang, Xiaoli Zhang, Mervin C. Yoder, Mark H. Kaplan, and Jingwu Xie
Précis: Dysregulation of the Hedgehog pathway in cancer cells drives the formation of a supportive microenvironment, thereby stimulating a core mechanism of support for the development of myeloid-derived suppressor cells.

MOLECULAR AND CELLULAR PATHOBIOLOGY

484 Cyclophilin B Supports Myc and Mutant p53-Dependent Survival of Glioblastoma Multiforme Cells
Jae Won Choi, Mark A. Schroeder, Jann N. Sarkaria, and Richard J. Bram
Précis: These results define the protein chaperone cyclophilin B as a promising molecular target for treatment of glioblastoma multiforme, with immediate clinical implications for repositioning the approved drug cyclosporin as a potential therapeutic to treat this aggressive malignancy.
Circadian Regulation of mTOR by the Ubiquitin
543
574
598
CUL4A Induces Epithelial–Mesenchymal Transition and Promotes Cancer Metastasis by Regulating ZEB1 Expression
Yunshan Wang, Mingxin Wen, Yongwon Kwon, Yangyang Xu, Yueyong Liu, Pengju Zhang, Xiaquan He, Qin Wang, Yurong Huang, Kuang-Yu Jen, Mark A. LaBarge, Liang You, Scott C. Kogan, Joe W. Gray, Jian-Hua Mao, and Guangwei Wei

Precis: These findings suggest a pivotal role for the oncogenic ubiquitin ligase CUL4A in regulating the metastatic behavior of breast cancer cells, with implications for therapeutic targeting of the pathway it regulates.

552
Blocking eIF5A Modification in Cervical Cancer Cells Alters the Expression of Cancer-Related Genes and Suppresses Cell Proliferation
Elisabeth Mémin, Mainul Hoque, Mohit R. Jain, Debra S. Heller, Hong Li, Bernadette Crucchiolo, Hartmut M. Hanuske-Abel, Tsafi Pe‘ery, and Michael B. Mathews

Precis: These findings suggest a mechanistic rationale to immediately repurpose two approved drugs for cancer treatment, offering a low-risk clinical opportunity to evaluate new therapeutic modalities for cancer treatment.

563
Novel Mechanism of MDA-7/IL-24 Cancer-Specific Apoptosis through SARI Induction

Precis: These findings define a signaling axis in cancer-specific killing that suggests a strategy to treat both local and metastatic disease.

574
Small Molecule Agonists of PPAR-γ Exert Therapeutic Effects in Esophageal Cancer
Hiroshi Sawayama, Takatsugu Ishimoto, Masayuki Watanabe, Naoya Yoshida, Hidetaka Sugihara, Junji Kurashige, Kotaro Hirashima, Masaaki Iwatsuki, Yoshifumi Baba, Eji Oki, Masaru Morita, Yoshinobu Shiise, and Hideo Baba

Precis: A new-generation small molecule agonist of PPAR-γ that is more selective than existing agents may offer a novel route to treat esophageal squamous cancers, with immediate implications for clinical translation.

584
Preclinical Therapeutic Efficacy of a Novel Pharmacologic Inducer of Apoptosis in Malignant Peripheral Nerve Sheath Tumors
Vincent Chau, S. Kyun Lim, Wei Mo, Chiachi Liu, Amish J. Patel, Renée M. McKay, Shuguang Wei, Bruce A. Posner, Jef K. De Brabander, Noelle S. Williams, Luis F. Parada, and Lu Q. Le

Precis: Using a robust new model of malignant peripheral nerve sheath tumors that recapitulates features of the human malignancy, this study identified a novel proapoptotic small molecule that inhibits tumor cell growth.

MDR1 Synonymous Polymorphisms Alter Transporter Specificity and Protein Stability in a Stable Epithelial Monolayer
King Leung Fung, James Pan, Shinobu Ohnuma, Paul E. Lund, Jessica N. Pixley, Chava Kimchi-Sarfaty, Suresh V. Ambudkar, and Michael M. Gottesman

Precis: Synonymous "silent" polymorphisms in the multiple drug resistance gene can nonetheless alter the function of the gene product and drive chemotherapeutic resistance.
TUMOR AND STEM CELL BIOLOGY

609 FGFR1–WNT–TGF-β Signaling in Prostate Cancer Mouse Models Recapitulates Human Reactive Stroma
Julienne L. Carstens, Payam Shahi, Susan Van Tsang, Billie Smith, Chad J. Creighton, Yiqun Zhang, Amber Seamans, Mamatha Seethammagari, Indira Vedula, Jonathan M. Levitt, Michael M. Ittmann, David R. Rowley, and David M. Spencer

Précis: Targeting the reactive stroma in aggressive prostate adenocarcinoma may generate a two-pronged attack that is more efficacious, by attacking cancer cells as well as the critical stromal tissue driving their outgrowth.

621 PPARα Activation Can Help Prevent and Treat Non–Small Cell Lung Cancer
Nataliya Skrypnyk, Xiwu Chen, Wen Hu, Yan Su, Stacey Mont, Shilin Yang, Maheshha Gangadhariah, Shouzuou Wei, John R. Falck, Jawahar Lal Jat, Roy Zent, Jorge H. Capdevila, and Ambra Pozzi

Précis: This important study provides a preclinical proof-of-concept for administering clinically approved PPARα agonists to treat lung cancer, with immediate implications to reposition an existing drug treatment that is well tolerated and may be highly efficacious in this setting.

LETTERS TO THE EDITOR

632 Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T-Cell Rejection Function in Tumors—Letter
David C. Binder and Hans Schreiber

633 Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T-Cell Rejection Function in Tumors—Response
Jaikumar Duraiswamy, Gordon J. Freeman, and George Coukos

635 Editors’ Viewpoint—Response
Mario P. Colombo and George C. Prendergast

CORRECTIONS

636 Correction: A Single-Nucleotide Substitution Mutator Phenotype Revealed by Exome Sequencing of Human Colon Adenomas

637 Correction: Neuropilin-2 Is Upregulated in Lung Cancer Cells during TGF-β1–Induced Epithelial–Mesenchymal Transition

ABOUT THE COVER

Anthracycline-based chemotherapy promotes the recruitment of CD11c+(green) CD86+(red) dendritic cells in close proximity to Caspase 3a+(magenta) dying tumor cells. This process relies on ‘‘eat me’’ signal ATP and CCL2/CCR2 chemotactic axis. For details, see the article by Ma and colleagues on page 436 of this issue.
Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/74/2

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.