Table of Contents

January 15, 2014 • Volume 74 • Number 2

BREAKING ADVANCES

399 Highlights from Recent Cancer Literature

REVIEWS

401 Urinary Tobacco Smoke–Constituent Biomarkers for Assessing Risk of Lung Cancer
Jian-Min Yuan, Lesley M. Butler, Irina Stepanov, and Stephen S. Hecht

412 ERKs in Cancer: Friends or Foes?
Xavier Deschênes-Simard, Filippos Kottakis, Sylvain Meloche, and Gerardo Ferbeyre

420 Bookmarking Target Genes in Mitosis: A Shared Epigenetic Trait of Phenotypic Transcription Factors and Oncogenes?
Sayyed K. Zaidi, Rodrigo A. Grandy, Cesar Lopez-Camacho, Martin Montecino, Andre J. van Wijnen, Jane B. Lian, Janet L. Stein, and Gary S. Stein

INTEGRATED SYSTEMS AND TECHNOLOGIES

426 Bridging Population and Tissue Scale Tumor Dynamics: A New Paradigm for Understanding Differences in Tumor Growth and Metastatic Disease
Jill Gallaher, Aravind Babu, Sylvia Plevritis, and Alexander R.A. Anderson

MICROENVIRONMENT AND IMMUNOLOGY

436 CCL2/CCR2-Dependent Recruitment of Functional Antigen-Presenting Cells into Tumors upon Chemotherapy
Yuting Ma, Stephen R. Mattarollo, Sandy Adjemian, Heng Yang, Laetitia Aymeric, Dalil Hannani, Joao Paulo Portela Catani, Helene Duret, Michele W.L. Teng, Oliver Kepp, Yidan Wang, Antonella Sistigu, Joachim L. Schultze, Gautier Stoll, Lorenzo Galluzzi, Laurence Zitvogel, Mark J. Smyth, and Guido Kroemer

MOLECULAR AND CELLULAR PATHOBIOLOGY

446 Immune Chaperone gp96 Drives the Contributions of Macrophages to Inflammatory Colon Tumorigenesis
Crystal Morales, Saleh Rachidi, Feng Hong, Shaoli Sun, Xinshou Ouyang, Caroline Wallace, Yongliang Zhang, Elizabeth Garret-Mayer, Jennifer Wu, Bei Liu, and Zihai Li

Précis: By using a macrophage-specific gene knockout mouse, this important study reveals how tumor-associated macrophages not only orchestrate local inflammation but also cell mutagenesis to drive the development of colon cancer.

460 MUC1 in Macrophage: Contributions to Cigarette Smoke–Induced Lung Cancer
Xiuling Xu, Mabel T. Padilla, Bilan Li, Alexandria Wells, Kosuke Kato, Carmen Tellez, Steven A. Belinsky, Kwang Chul Kim, and Yong Lin

Précis: These results shed light on the mechanisms of inflammation-associated lung carcinogenesis, showing how cigarette smoke promotes contributions from lung macrophages in the tissue microenvironment to promote lung cancer.

471 Defective TGF-β Signaling in Bone Marrow–Derived Cells Prevents Hedgehog-Induced Skin Tumors
Qipeng Fan, Dongsheng Gu, Hailan Liu, Ling Yang, Xiaoli Zhang, Mervin C. Yoder, Mark H. Kaplan, and Jingwu Xie

Précis: Dysregulation of the Hedgehog pathway in cancer cells drives the formation of a supportive microenvironment, by stimulating a core mechanism of support for the development of myeloid-derived suppressor cells.

484 Cyclophilin B Supports Myc and Mutant p53-Dependent Survival of Glioblastoma Multiforme Cells
Jae Won Choi, Mark A. Schroeder, Jann N. Sarkaria, and Richard J. Bram

Précis: These results define the protein chaperone cyclophilin B as a promising molecular target for treatment of glioblastoma multiforme, with immediate clinical implications for repositioning the approved drug cyclosporin as a potential therapeutic to treat this aggressive malignancy.
547 **Circadian Regulation of mTOR by the Ubiquitin Pathway in Renal Cell Carcinoma**
Hiroiyouki Okazaki, Naoya Matsunaga, Takashi Fujioka, Fumiyasu Okazaki, Yui Akagawa, Yumia Tsurudome, Mayumi Ono, Michihiko Kuwano, Satoru Koyanagi, and Shigehiro Ohdo

Précis: This important study shows how a pivot cell growth regulator is controlled by circadian clock systems, with significant therapeutic implications.

552 **Blocking eIF5A Modification in Cervical Cancer Cells Alters the Expression of Cancer-Related Genes and Suppresses Cell Proliferation**
Elisabeth Mémin, Mainul Hoque, Mohit R. Jain, Debra S. Heller, Hong Li, Bernadette Cracchiolo, Hartmut M. Hanauske-Abel, Tsaii Pe'ery, and Michael B. Mathews

Précis: These findings suggest a mechanistic rationale to immediately reposition two approved drugs for cancer treatment, offering a low-risk clinical opportunity to evaluate new therapeutic modalities for cancer treatment.

558 **MDR1 Synonymous Polymorphisms Alter Transporter Specificity and Protein Stability in a Stable Epithelial Monolayer**
King Leung Fung, James Pan, Shinobu Ohnuma, Paul E. Lund, Jessica N. Pixley, Chaya Kimchi-Sarfaty, Suresh V. Ambudkar, and Michael M. Gottesman

Précis: Synonymous "silent" polymorphisms in the multiple drug resistance gene can nonetheless alter the function of the gene product and drive chemotherapeutic resistance.
FGFR1–WNT–TGF-β Signaling in Prostate Cancer Mouse Models Recapitulates Human Reactive Stroma
Julienne L. Carstens, Payam Shahi, Susan Van Tsang, Billie Smith, Chad J. Creighton, Yiqun Zhang, Amber Seamans, Mamatha Seethammagari, Indira Vedula, Jonathan M. Levitt, Michael M. Ittmann, David R. Rowley, and David M. Spencer

Précis: Targeting the reactive stroma in aggressive prostate adenocarcinoma may generate a two-pronged attack that is more efficacious, by attacking cancer cells as well as the critical stromal tissue driving their outgrowth.

PPARα Activation Can Help Prevent and Treat Non–Small Cell Lung Cancer
Nataliya Skrypnyk, Xiwu Chen, Wen Hu, Yan Su, Stacey Mont, Shilin Yang, Mahesha Gangadhariah, Shouzuo Wei, John R. Falck, Jawahar Lal Jat, Roy Zent, Jorge H. Capdevila, and Ambra Pozzi

Précis: This important study provides a preclinical proof-of-concept for administering clinically approved PPARα agonists to treat lung cancer, with immediate implications to reposition an existing drug treatment that is well tolerated and may be highly efficacious in this setting.
Cancer Research

74 (2)

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/74/2

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.