BREAKING ADVANCES

399 Highlights from Recent Cancer Literature

REVIEWS

401 Urinary Tobacco Smoke–Constituent Biomarkers for Assessing Risk of Lung Cancer
Jian-Min Yuan, Lesley M. Butler, Irina Stepanov, and Stephen S. Hecht

412 ERKs in Cancer: Friends or Foes?
Xavier Deschênes-Simard, Filippos Kottakis, Sylvain Meloche, and Gerardo Ferbeyre

420 Bookmarking Target Genes in Mitosis: A Shared Epigenetic Trait of Phenotypic Transcription Factors and Oncogenes?
Sayyed K. Zaidi, Rodrigo A. Grandy, Cesar Lopez-Camacho, Martin Montecino, Andre J. van Wijnen, Jane B. Lian, Janet L. Stein, and Gary S. Stein

INTEGRATED SYSTEMS AND TECHNOLOGIES

426 Bridging Population and Tissue Scale Tumor Dynamics: A New Paradigm for Understanding Differences in Tumor Growth and Metastatic Disease
Jill Gallaher, Aravind Babu, Sylvia Plevritis, and Alexander R.A. Anderson

436 CCL2/CCR2-Dependent Recruitment of Functional Antigen-Presenting Cells into Tumors upon Chemotherapy
Yuting Ma, Stephen R. Mattarollo, Sandy Adjemian, Heng Yang, Laetitia Aymeric, Dalil Hannani, João Paulo Portela Catani, Helene Duret, Michele W.L. Teng, Oliver Kepp, Yidan Wang, Antonella Sistigu, Joachim L. Schultze, Gautier Stoll, Lorenzo Galluzzi, Laurence Zitvogel, Mark J. Smyth, and Guido Kroemer

446 Immune Chaperone gp96 Drives the Contributions of Macrophages to Inflammatory Colon Tumorigenesis
Crystal Morales, Saleh Rachidi, Feng Hong, Shaoli Sun, Xinshou Ouyang, Caroline Wallace, Yongliang Zhang, Elizabeth Garret-Mayer, Jennifer Wu, Bei Liu, and Zhai Li

460 MUC1 in Macrophage: Contributions to Cigarette Smoke–Induced Lung Cancer
Xiuling Xu, Mabel T. Padilla, Bilan Li, Alexandriana Wells, Kosuke Kato, Carmen Tellez, Steven A. Belinsky, Kwang Chul Kim, and Yong Lin

471 Defective TGF-β Signaling in Bone Marrow–Derived Cells Prevents Hedgehog-Induced Skin Tumors
Qipeng Fan, Dongsheng Gu, Hailan Liu, Ling Yang, Xiaoli Zhang, Mervin C. Yoder, Mark H. Kaplan, and Jingwu Xie

MICROENVIRONMENT AND IMMUNOLOGY

436 CCL2/CCR2-Dependent Recruitment of Functional Antigen-Presenting Cells into Tumors upon Chemotherapy
Yuting Ma, Stephen R. Mattarollo, Sandy Adjemian, Heng Yang, Laetitia Aymeric, Dalil Hannani, João Paulo Portela Catani, Helene Duret, Michele W.L. Teng, Oliver Kepp, Yidan Wang, Antonella Sistigu, Joachim L. Schultze, Gautier Stoll, Lorenzo Galluzzi, Laurence Zitvogel, Mark J. Smyth, and Guido Kroemer

446 Immune Chaperone gp96 Drives the Contributions of Macrophages to Inflammatory Colon Tumorigenesis
Crystal Morales, Saleh Rachidi, Feng Hong, Shaoli Sun, Xinshou Ouyang, Caroline Wallace, Yongliang Zhang, Elizabeth Garret-Mayer, Jennifer Wu, Bei Liu, and Zhai Li

450 MUC1 in Macrophages: Contributions to Cigarette Smoke–Induced Lung Cancer
Xiuling Xu, Mabel T. Padilla, Bilan Li, Alexandriana Wells, Kosuke Kato, Carmen Tellez, Steven A. Belinsky, Kwang Chul Kim, and Yong Lin

Molecular and Cellular Pathobiology

484 Cyclophilin B Supports Myc and Mutant p53-Dependent Survival of Glioblastoma Multiforme Cells
Jae Won Choi, Mark A. Schroeder, Jann N. Sarkaria, and Richard J. Bram

Précis: These results define the protein chaperone cyclophilin B as a promising molecular target for treatment of glioblastoma multiforme, with immediate clinical implications for repositioning the approved drug cyclosporin as a potential therapeutic to treat this aggressive malignancy.
Circadian Regulation of mTOR by the Ubiquitin
Regulator is controlled by circadian clock systems, with implications for therapeutic targeting of the pathway it regulates.

Identification of a Cyclin D1 Network in Prostate Cancer That Antagonizes Epithelial–Mesenchymal Transition and Promotes Cancer Metastasis by Regulating ZEB1 Expression
These findings suggest a mechanistic rationale to immediately reposition two approved drugs for cancer treatment, offering a low-risk clinical opportunity to evaluate new therapeutic modalities for cancer treatment.

CUL4A Induces Epithelial–Mesenchymal Transition and Promotes Cancer Metastasis by Regulating ZEB1 Expression
This mechanistic study sheds new light on opposing circuitries of control for mesenchymal and epithelial states in cancer cells, the balance of which may influence invasive migration and metastasis.

p53-Induced miR-15a/16-1 and AP4 Form a Double-Negative Feedback Loop to Regulate Epithelial–Mesenchymal Transition and Metastasis in Colorectal Cancer
These results reveal a new pathway of iron dysregulation in breast cancer and identify IRP2, a master regulator of intracellular iron homeostasis, as an important driver of breast cancer growth.

IRP2 Regulates Breast Tumor Growth
This study reveals a novel function for cyclin D1 in mediating the expansion of prostate stem cells that contribute to prostate cancer.

IRP2 Regulates Breast Tumor Growth
These findings define a signaling axis in cancer-specific killing that suggests a strategy to treat both local and metastatic disease.

Small Molecule Agonists of PPAR-γ Exert Therapeutic Effects in Esophageal Cancer
These findings suggest a mechanistic rationale to immediately reposition two approved drugs for cancer treatment, offering a low-risk clinical opportunity to evaluate new therapeutic modalities for cancer treatment.

MDR1 Synonymous Polymorphisms Alter Transporter Specificity and Protein Stability in a Stable Epithelial Monolayer
These findings suggest a mechanistic rationale to immediately reposition two approved drugs for cancer treatment, offering a low-risk clinical opportunity to evaluate new therapeutic modalities for cancer treatment.
TUMOR AND STEM CELL BIOLOGY

609 FGFR1–WNT–TGF-β Signaling in Prostate Cancer Mouse Models Recapitulates Human Reactive Stroma
Julienne L. Carstens, Payam Shahi, Susan Van Tsang, Billie Smith, Chad J. Creighton, Yiqun Zhang, Amber Seamans, Mamatha Seshhammaggari, Indira Vedula, Jonathan M. Levitt, Michael M. Ittmann, David R. Rowley, and David M. Spencer

Précis: Targeting the reactive stroma in aggressive prostate adenocarcinoma may generate a two-pronged attack that is more efficacious, by attacking cancer cells as well as the critical stromal tissue driving their outgrowth.

621 PPARα Activation Can Help Prevent and Treat Non–Small Cell Lung Cancer
Nataliya Skrypnyk, Xiwu Chen, Wen Hu, Yan Su, Stacey Mont, Shilin Yang, Mahesha Gangadhariah, Shouzuo Wei, Carolyn R. Falck, Jawahar Lal Jat, Roy Zent, Jorge H. Capdevila, and Ambra Pozzi

Précis: This important study provides a preclinical proof-of-concept for administering clinically approved PPARα agonists to treat lung cancer, with immediate implications to reposition an existing drug treatment that is well tolerated and may be highly efficacious in this setting.

LETTERS TO THE EDITOR

632 Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T-Cell Rejection Function in Tumors—Letter
David C. Binder and Hans Schreiber

633 Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T-Cell Rejection Function in Tumors—Response
Jaikumar Duraiswamy, Gordon J. Freeman, and George Coukos

635 Editors’ Viewpoint—Response
Mario P. Colombo and George C. Prendergast

CORRECTIONS

636 Correction: A Single-Nucleotide Substitution Mutator Phenotype Revealed by Exome Sequencing of Human Colon Adenomas

637 Correction: Neuropilin-2 Is Upregulated in Lung Cancer Cells during TGF-β1–Induced Epithelial–Mesenchymal Transition

ABOUT THE COVER

Anthracycline-based chemotherapy promotes the recruitment of CD11c⁺ (green) CD86⁺ (red) dendritic cells in close proximity to Caspase 3a⁺ (magenta) dying tumor cells. This process relies on 'eat me' signal ATP and CCL2/CCR2 chemotactic axis. For details, see the article by Ma and colleagues on page 436 of this issue.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/74/2

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.