BREAKING ADVANCES

399 Highlights from Recent Cancer Literature

REVIEWS

401 Urinary Tobacco Smoke–Constituent Biomarkers for Assessing Risk of Lung Cancer
Jian-Min Yuan, Lesley M. Butler, Irina Stepanov, and Stephen S. Hecht

412 ERKs in Cancer: Friends or Foes?
Xavier Deschênes-Simard, Filippos Kottakis, Sylvain Meloche, and Gerardo Ferbeyre

420 Bookmarking Target Genes in Mitosis: A Shared Epigenetic Trait of Phenotypic Transcription Factors and Oncogenes?
Sayyed K. Zaidi, Rodrigo A. Grandy, Cesar Lopez-Camacho, Martin Montecino, Andre J. van Wijnen, Jane B. Lian, Janet L. Stein, and Gary S. Stein

INTEGRATED SYSTEMS AND TECHNOLOGIES

426 Bridging Population and Tissue Scale Tumor Dynamics: A New Paradigm for Understanding Differences in Tumor Growth and Metastatic Disease
Jill Gallaher, Aravind Babu, Sylvia Plevritis, and Alexander R.A. Anderson

460 MUC1 in Macrophage: Contributions to Cigarette Smoke–Induced Lung Cancer
Xiuling Xu, Mabel T. Padilla, Bilan Li, Alexandra Wells, Kosuke Kato, Carmen Tellez, Steven A. Belinsky, Kwang Chul Kim, and Yong Lin

MICROENVIRONMENT AND IMMUNOLOGY

436 CCL2/CCR2-Dependent Recruitment of Functional Antigen-Presenting Cells into Tumors upon Chemotherapy
Yuting Ma, Stephen R. Mattarollo, Sandy Adjemian, Heng Yang, Laetitia Aymeric, Dalil Hannani, João Paulo Portela Catani, Helene Duret, Michele W.L. Teng, Oliver Kepp, Yidan Wang, Antonella Sistigu, Joachim L. Schultze, Gautier Stoll, Lorenzo Galluzzi, Laurence Zitvogel, Mark J. Smyth, and Guido Kroemer

471 Defective TGF-β Signaling in Bone Marrow–Derived Cells Prevents Hedgehog-Induced Skin Tumors
Qipeng Fan, Dongsheng Gu, Hailan Liu, Ling Yang, Xiaoli Zhang, Mervin C. Yoder, Mark H. Kaplan, and Jingwu Xie

MOLECULAR AND CELLULAR PATHOBIOLOGY

446 Immune Chaperone gp96 Drives the Contributions of Macrophages to Inflammatory Colon Tumorigenesis
Crystal Morales, Saleh Rachidi, Feng Hong, Shaoli Sun, Xinshou Ouyang, Caroline Wallace, Yongliang Zhang, Elizabeth Garret-Mayer, Jennifer Wu, Bei Liu, and Zihai Li

468 Defective TGF-β Signaling in Bone Marrow–Derived Cells Prevents Hedgehog-Induced Skin Tumors
Qipeng Fan, Dongsheng Gu, Hailan Liu, Ling Yang, Xiaoli Zhang, Mervin C. Yoder, Mark H. Kaplan, and Jingwu Xie

Precis: These findings illustrate the importance of CCL2/CCR2 signaling pathways for immunogenic chemotherapeutics to elicit their antitumor effects, suggesting risks that CCL2/CCR2 targeting strategies being tested clinically may actually worsen clinical outcomes in cancer patients.
Table of Contents

547 **Circadian Regulation of mTOR by the Ubiquitin Pathway in Renal Cell Carcinoma**
Hiroyuki Okazaki, Naoya Matsunaga, Takashi Fujioka, Fumiyasu Okazaki, Yui Akagawa, Yuniya Tsurudome, Mayumi Ono, Michihiko Kuwano, Satoru Koyanagi, and Shigehiro Ohdo

Précis: This important study shows how a pivotal cell growth regulator is controlled by circadian clock systems, with significant therapeutic implications.

552 **Blocking eIF5A Modification in Cervical Cancer Cells Alters the Expression of Cancer-Related Genes and Suppresses Cell Proliferation**
Elisabeth Mémin, Mainul Hoque, Mohit R. Jain, Debra S. Heller, Hong Li, Bernadette Cracchiolo, Hartmut M. Hanuske-Abel, Tsafi Pe'ery, and Michael B. Mathews

Précis: These findings suggest a mechanistic rationale to immediately reposition two approved drugs for cancer treatment, offering a low-risk clinical opportunity to evaluate new therapeutic modalities for cancer treatment.

558 **MDR1 Synonymous Polymorphisms Alter Transporter Specificity and Protein Stability in a Stable Epithelial Monolayer**
King Leung Fung, James Pan, Shinobu Ohtuma, Paul E. Lund, Jessica N. Pixley, Chava Kimchi-Sarfaty, Suresh V. Ambudkar, and Michael M. Gottesman

Précis: Synonymous "silent" polymorphisms in the multiple drug resistance gene can nonetheless alter the function of the gene product and drive chemotherapeutic resistance.

563 **Novel Mechanism of MDA-7/IL-24 Cancer-Specific Apoptosis through SARI Induction**

Précis: These findings define a signaling axis in cancer-specific killing that suggests a strategy to treat both local and metastatic disease.

575 **Preclinical Therapeutic Efficacy of a Novel Pharmacologic Inducer of Apoptosis in Malignant Peripheral Nerve Sheath Tumors**
Vincent Chau, S. Kyun Lim, Wei Mo, Chiachi Liu, Amish J. Patel, René M. McKay, Shuguang Wei, Bruce A. Posner, Jef K. De Brabander, Noelle S. Williams, Luis F. Parada, and Lu Q. Le

Précis: Using a robust new model of malignant peripheral nerve sheath tumors that recapitulates features of the human malignancy, this study identified a novel proapoptotic small molecule that inhibits tumor cell growth.

586 **Small Molecule Agonists of PPARγ Exert Therapeutic Effects in Esophageal Cancer**
Hiroshi Sawayama, Takatsugu Ishimoto, Masayuki Watanabe, Naoya Yoshida, Hidetaka Sugihara, Junji Kurashige, Kotaro Hirashima, Masaaki Iwatsuki, Yoshifumi Baba, Eiji Oki, Masaru Morita, Yoshinobu Shiose, and Hideo Baba

Précis: A new-generation small molecule agonist of PPARγ that is more selective than existing agents may offer a novel route to treat esophageal squamous cancers, with immediate implications for clinical translation.

592 **Blocking eIF5A Modification in Cervical Cancer Cells Alters the Expression of Cancer-Related Genes and Suppresses Cell Proliferation**
Elisabeth Mémin, Mainul Hoque, Mohit R. Jain, Debra S. Heller, Hong Li, Bernadette Cracchiolo, Hartmut M. Hanuske-Abel, Tsafi Pe’ery, and Michael B. Mathews

Précis: These findings suggest a mechanistic rationale to immediately reposition two approved drugs for cancer treatment, offering a low-risk clinical opportunity to evaluate new therapeutic modalities for cancer treatment.

598 **Identification of a Cyclic D1 Network in Prostate Cancer That Antagonizes Epithelial–Mesenchymal Restraint**
Xiaoming Ju, Mathew C. Casimiro, Michael Gormley, Hui Meng, Xuanmao Jiao, Sanjay Katiyar, Marco Crussariol, Ke Chen, Min Wang, Andrew A. Quong, Michael P. Lisanti, Adam Ertel, and Richard G. Pestell

Précis: This study reveals a novel function for cyclin D1 in mediating the expansion of prostate stem cells that contribute to prostate cancer.

598 **CUL4A Induces Epithelial–Mesenchymal Transition and Promotes Cancer Metastasis by Regulating ZEB1 Expression**
Yunshan Wang, Mingxin Wen, Yongwon Kwon, Yangyang Xu, Yueyong Liu, Pengju Zhang, Xinquan He, Qin Wang, Yurong Huang, Kuang-Yu Jen, Mark A. Laharge, Liang You, Scott C. Kogan, Joe W. Gray, Jian-Hua Mao, and Guangwei Wei

Précis: These findings suggest a pivotal role for the oncogenic ubiquitin ligase CUL4A in regulating the metastatic behavior of breast cancer cells, with implications for therapeutic targeting of the pathway it regulates.

606 **p53-Induced miR-15a/16-1 and AP4 Form a Double-Negative Feedback Loop to Regulate Epithelial–Mesenchymal Transition and Metastasis in Colorectal Cancer**
Lei Shi, Rene Jackstadt, Helge Siemens, Huihui Li, Jian-Hua Mao, and Guangwei Wei

Précis: These findings define a signaling axis in cancer-specific killing that suggests a strategy to treat both local and metastatic disease.

611 **MDR1 Synonymous Polymorphisms Alter Transporter Specificity and Protein Stability in a Stable Epithelial Monolayer**
King Leung Fung, James Pan, Shinobu Ohtuma, Paul E. Lund, Jessica N. Pixley, Chava Kimchi-Sarfaty, Suresh V. Ambudkar, and Michael M. Gottesman

Précis: Synonymous "silent" polymorphisms in the multiple drug resistance gene can nonetheless alter the function of the gene product and drive chemotherapeutic resistance.
TUMOR AND STEM CELL BIOLOGY

609 FGFR1–WNT–TGF-β Signaling in Prostate Cancer Mouse Models Recapitulates Human Reactive Stroma
Julienne L. Carstens, Payam Shahi, Susan Van Tsang, Billie Smith, Chad J. Creighton, Yiqun Zhang, Amber Seamans, Mamatha Seshhammagari, Indira Vedula, Jonathan M. Levitt, Michael M. Ittmann, David R. Rowley, and David M. Spencer

Précis: Targeting the reactive stroma in aggressive prostate adenocarcinoma may generate a two-pronged attack that is more efficacious, by attacking cancer cells as well as the critical stromal tissue driving their outgrowth.

621 PPARγ Activation Can Help Prevent and Treat Non–Small Cell Lung Cancer
Nataliya Skrypnyk, Xiwu Chen, Wen Hu, Yan Su, Stacey Mont, Shilin Yang, Mahesha Gangadhariah, Shouzuo Wei, John R. Falck, Jawahar Lal Jat, Roy Zent, Jorge H. Capdevila, and Ambra Pozzi

Précis: This important study provides a preclinical proof-of-concept for administering clinically approved PPARγ agonists to treat lung cancer, with immediate implications to reposition an existing drug treatment that is well tolerated and may be highly efficacious in this setting.

LETTERS TO THE EDITOR

632 Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T-Cell Rejection Function in Tumors—Letter
David C. Binder and Hans Schreiber

633 Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T-Cell Rejection Function in Tumors—Response
Jaikumar Duraiswamy, Gordon J. Freeman, and George Coukos

635 Editors’ Viewpoint—Response
Mario P. Colombo and George C. Prendergast

CORRECTIONS

636 Correction: A Single-Nucleotide Substitution Mutator Phenotype Revealed by Exome Sequencing of Human Colon Adenomas

637 Correction: Neuropilin-2 Is Upregulated in Lung Cancer Cells during TGF-β1–Induced Epithelial–Mesenchymal Transition

ABOUT THE COVER

Anthraclyline-based chemotherapy promotes the recruitment of CD11c+ (green) CD86+ (red) dendritic cells in close proximity to Caspase 3a+ (magenta) dying tumor cells. This process relies on “eat me” signal ATP and CCL2/CCR2 chemotactic axis. For details, see the article by Ma and colleagues on page 436 of this issue.