IRP2 Regulates Breast Tumor Growth

Wei Wang1, Zhiyong Deng4, Heather Hatcher2, Lance D. Miller2, Xiumin Di2, Lia Tesfay4, Guangchao Sui2, Ralph B. D’Agostino Jr3, Frank M. Torti5, and Suzy V. Torti4

Abstract

Experimental and epidemiologic evidence suggests that dysregulation of proteins involved in iron metabolism plays a critical role in cancer. The mechanisms by which cancer cells alter homeostatic iron regulation are just beginning to be understood. Here, we demonstrate that iron regulatory protein 2 (IRP2) plays a key role in iron accumulation in breast cancer. Although both IRP1 and IRP2 are overexpressed in breast cancer, the overexpression of IRP2, but not IRP1, is associated with decreased ferritin H and increased transferrin receptor 1 (TIR1). Knockdown of IRP2 in triple-negative MDA-MB-231 human breast cancer cells increases ferritin H expression and decreases TIR1 expression, resulting in a decrease in the labile iron pool. Further, IRP2 knockdown reduces growth of MDA-MB-231 cells in the mouse mammary fat pad. Gene expression microarray profiles of patients with breast cancer demonstrate that increased IRP2 expression is associated with high-grade cancer. Increased IRP2 expression is observed in luminal A, luminal B, and basal breast cancer subtypes, but not in breast tumors of the ERBB2 molecular subtype. These results suggest that dysregulation of IRP2 is an early nodal point underlying altered iron metabolism in breast cancer and may contribute to poor outcome of some patients with breast cancer. Cancer Res; 74(2); 497–507. ©2013 AACR.

Introduction

Iron is essential for normal cell growth and proliferation. A growing body of evidence suggests that iron dysregulation plays a role in the pathogenesis and progression of many common diseases, including cancer (1–3). The underlying mechanisms by which iron contributes to malignancy are incompletely understood, and include (i) the production of reactive oxygen species (ROS); (ii) induction of oxidative-responsive transcription factors (AP-1, NFκB; refs. 4, 5); (iii) stimulation of oncogenic pathways (6); and (iv) effects on DNA synthesis (7), DNA repair (8), and the cell cycle (9–11). Breast and other cancers are characterized by an increase in iron uptake and/or reduction in iron efflux, both of which favor iron sequestration (12). Iron deprivation has been demonstrated to inhibit tumor growth, and has been used to treat cancers in animal models and human clinical trials with some success (13–18).

There is a particularly close association between iron and breast cancer. Lifetime exposure to estrogen is a risk factor for breast cancer (19). Estrogen contributes to tumor formation in part by redox cycling, which promotes the formation of oxidized DNA bases (20). This DNA-damaging effect of estrogen is potentiated by iron (21, 22). In addition, estrogen and iron exert combined effects in stimulating proliferation of breast cancer cells in tissue culture (23), suggesting that iron may play both a tumor-initiating and tumor-promoting role in breast cancer. Recent studies using biopsy tissue demonstrate that breast cancer tissue has a higher level of iron than normal breast tissue (24).

Decreases in iron efflux and increases in iron influx both play a role in the increased accumulation of iron in malignant breast tissue (12, 25). Low levels of the Fe(II) export protein, ferroportin (SLC40A1), in breast cancers contributes to the breast cancer phenotype (12), and the combined expression of low ferroportin and high hepcidin (HAMP; export dyad) predict poor outcome in patients with breast cancer after definitive surgery. Breast cancers that express high transferrin receptor 1 (1 and low HFE (the hemochromatosis gene, a negative regulator of TIR1[TFRC]), and are, thus, predicted to exhibit high iron uptake, are also associated with poor outcome (25).

What mechanisms underlie the altered expression of proteins that regulate iron import and efflux in breast cancer? Because iron-regulatory proteins (IRP), IRP1 (ACO1) and IRP2 (IREB2), play a central role in the regulation of intracellular iron metabolism (26), we examined the role of IRP1 and IRP2 in breast cancer. IRPs regulate iron by binding to iron-responsive elements (IRE) present in the untranslated region of mRNAs encoding iron-related proteins, such as ferritin H (FTH1; refs 27, 28), ferritin L (FTL; ref 29), transferrin receptor 1 (TIR1; refs 30, 31), and ferroportin (32). The role of IREs in ferritin and TIR1

Authors' Affiliations: Departments of 1Pathology, 2Cancer Biology, and 3Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina; Departments of 4Molecular, Microbial and Structural Biology and 5Internal Medicine, University of Connecticut Health Center, Farmington, Connecticut

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

W. Wang and Z. Deng contributed equally to this work.

Corresponding Author: Suzy V. Torti, Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030. Phone: 860-679-6503; Fax: 860-679-6502; E-mail: storti@uchc.edu

doi: 10.1158/0008-5472.CAN-13-1224
©2013 American Association for Cancer Research.
have been particularly well studied (26). When IRPs bind to the IRE in the 3′-UTR of ferritin, they inhibit translation. When IRPs bind to the IREs in the 3′-UTR of TR1, they stabilize the mRNA. Because decreased ferritin decreases iron storage, whereas increased TR1 increases iron uptake, enhanced binding of IRPs to IRE leads to increased metabolically available iron (the labile iron pool).

In this study, we report that IRP2 plays a predominant role in the regulation of the proteins of iron metabolism in breast cells and is overexpressed in breast cancer cells. Knockdown of IRP2 retards breast tumor growth in vivo. Further, high IRP2 expression is associated with high tumor grade and breast cancer molecular subtypes. These results demonstrate that IRP2 plays an important role in breast cancer by enhancing iron accumulation in tumor cells.

Materials and Methods

Chemicals and cell cultures

Human mammary epithelial cells (HME) cells were purchased from Lonza and used at less than passage 10. R5 cells were a kind gift from R. Weinberg (12, 33). R5 cells are tumorigenic variants of HME cells established by sequential transformation of HME cells with telomerase catalytic subunit, SV40 T antigen, and oncogenic H-ras. HME and R5 cells were maintained in the same medium (Dulbecco’s Modified Eagle Medium F-12, DMEM–F12, supplemented with l-glutamine, insulin, human EGF, and hydrocortisone) for 24 hours before harvest. MCF10A and MCF7 cells were obtained from the Wake Forest University Comprehensive Cancer Center Tissue Culture Core facility. MDA-MB-231-Luc cells were obtained from Dr. P. Ponka.

Establishment of inducible IRP2 knockdown clones

Tet-inducible IRP2 knockdown clones were established in MDA-MB-231-Luc cells by lentiviral transduction of pLenti6/TRE (Invitrogen) and blastidin (10 μg/mL) selection followed by introduction of a lentiviral vector containing an IRP2 shRNA sequence under the control of tetracycline-responsive element (TRE) and selection with puromycin (0.8 μg/mL). The shRNA sequence used to knockdown IRP2 was described previously (36).

Labile iron pool assay

The cellular labile iron pool was measured using calcein as a fluorescent probe, essentially as previously described (12).

Clonogenic assay

After infection with shRNA-expressing lentivirus, cells were seeded in 6-well plates at densities of 600, 400, and 200 cells per well. Twenty days later, cells were fixed in 10% formalin and stained with 0.25% crystal violet to detect colony formation.

Real-time reverse transcription-PCR

Real-time reverse transcription PCR (RT-PCR) was performed on the ABI Prism 7000 sequence detection system (Applied Biosystems, Foster City, CA) as described previously (36). PCR Primers were designed with IDT PrimerQuest software (Integrated DNA Technologies, Inc.), and are listed in Supplementary Table S1.

Western blotting

Western blotting was performed as described previously (37). Whole cellular protein was extracted using NP-40 lysis buffer containing a protease inhibitor cocktail (Roche Diagnostics). Antibodies used for detection were glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Fitzgerald), TR1 (Invitrogen), ferritin H (38), IRP1 (MediMabs), and IRP2 (Santa Cruz Biotechnology).

RNA bandshift assay

RNA bandshift assays were performed as previously described (36) using a ferritin H IRE probe prepared from in vitro transcription of BamHI linearized pST18 plasmid (a kind gift of Dr. P. Ponka).

Xenograft experiments

Animal protocols were approved by the Wake Forest School of Medicine Animal Care and Use Committee. MDA-MB-231-Luc cells (infected with lentiviruses encoding control scrambled or IRP2 shRNA) were inoculated into the fourth inguinal

Materials and Methods

Cell proliferation assay

Cell proliferation was measured using a WST-1 assay kit according to the manufacturer’s instructions (Roche Applied Science).

Apoptosis assays

The luminescent-based Caspase-Glo 3/7 assay kit (Promega) was used according to the manufacturer’s instructions. Annexin V and 7-aminoactinomycin D (7-AAD) permeability were analyzed using an apoptotic detection kit (BD Biosciences), a MACSQuant Analyzer (Miltenyi Biotec), and FlowJo (Treestar).

DNA construction and lentivirus infection

The target sequences for gene silencing of IRP1 and IRP2 are: IRP2-shRNA-1(GATCTTACAGTTGACCATCTC), IRP2-shRNA-2(GGAGTGCTGGAAAGGTGTT), IRP1-shRNA-1(GTATAAGCATATGGCAATTGCT), IRP1-shRNA-2(GAAGGATACACTATT).

Cancer Res; 74(2) January 15, 2014 Cancer Research

498
mammary fat pad of 8- to 10-week-old female athymic NCr nu/nu mice (strain code 01B74, Frederick National Laboratory for Cancer Research, Frederick, Maryland). Tumor growth was monitored twice a week using digital calipers; bioluminescent imaging was performed once weekly from days 11 to 32 postinoculation. Mice were removed from the study when tumor volume reached 10% of total body weight, and the study was terminated at day 102.

Statistical analyses

Survival times were compared using Kaplan–Meier curves and log-rank tests. Tumor volumes and luciferase (lux) values were compared using a repeated measures model, taking into account the multiple measurements on each animal. All analyses were performed using SAS version 9.3. Significance levels were set at 0.0167 to allow for three pair-wise comparisons to be made among the three treatment groups (IRP2KD1, IRP2KD2, and control).

Gene expression analysis in breast tumors

A cohort of primary breast cancer cases previously profiled on Affymetrix GeneChip microarrays (39) was analyzed for correlations between IRP2 gene expression and clinicopathologic characteristics of breast cancer. Microarray data were downloaded from the Gene Expression Omnibus (accession number GSE3494). Raw data were normalized using the MAS5 global mean method, scaled to a mean target intensity value of 500, and (2) log transformed. Expression intensity values of the Affymetrix probe set 225892_at corresponding to IRP2 was used for statistical analyses. Of the 251 tumors profiled, 249 were assigned histologic grade (according to the Nottingham modification of the Scarff–Bloom–Richardson grading system; ref. 39) and 228 were assigned to Sordé–Perou intrinsic subtypes with centroid correlation of at least 0.10 (40). Statistical associations between IRP2 expression and histologic grade or intrinsic subtype were assessed using the Student t test.

Results

Transferrin receptor 1 is increased and ferritin H is decreased in breast cancer cells compared with nonmalignant mammary epithelial cells

Ferritin and TfR1 play major roles in the modulation of cellular iron levels. Ferritin sequesters iron in an inactive form and, thus, decreases labile iron pool (LIP), whereas TfR1 transports diferric transferrin into cells to increase LIP. To explore whether these proteins were altered in breast cancer cells, we compared ferritin H and TfR1 protein levels in breast cancer cells versus nonmalignant breast epithelial cells. Two pairs of cells were used: (i) normal HME compared with a transformed version of these cells derived by sequential addition of immortalizing and oncogenic proteins (termed R5 here—see Materials and Methods); (ii) MCF7, an immortalized diploid cell line, compared with MCF-7, a cell line generated from a patient with metastatic breast cancer. As shown in Fig. 1A, TfR1 is increased, whereas ferritin H is reduced in breast cancer cell lines (R5 and MCF7) when compared with their nonmalignant counterparts (HME and MCF10A), consistent with an iron sequestration phenotype in cancer cells.

IRP2 is consistently increased in breast cancer cells

Because both ferritin H and TfR1 are controlled by the IRP–IRE system, we tested whether altered expression of either IRP1 or IRP2 was responsible for the change in ferritin and TfR1 observed in breast cancer cells. As shown in Fig. 1B, IRP2 mRNA was increased 2-fold in R5 and 4-fold in MCF-7 cells compared with their nonmalignant counterparts, HME and MCF10A, whereas IRP1 mRNA levels were unchanged. Western blots were performed to assess IRP1 and IRP2 protein levels. In contrast to what was observed at the mRNA level, both IRP1 and IRP2 protein levels were increased in R5 and MCF7 breast cancer cells compared with their normal counterparts (Fig. 1C).

To assess the generality of these results, we analyzed expression of ferritin H, TfR1, IRP1, and IRP2 in five additional breast cancer cell lines. As shown in Fig. 1D, Western blot analysis demonstrated a consistent pattern of ferritin H decrease, TfR1 increase, and IRP2 increase in these breast cancer cell lines when compared with normal mammary epithelial cells. In contrast, IRP1 levels were variable. IRP2 mRNA was increased relative to HME cells in all except one cell line (MDA-MB-453), suggesting that both transcriptional and posttranscriptional mechanisms drive the enhanced expression of IRP2 in breast cancer cells (Supplementary Fig. S1). As anticipated, transcript levels of TfR1 were increased in these breast cancer cell lines. Levels of ferritin H mRNA were decreased (Supplementary Fig. S1), suggesting that reduction in ferritin H transcripts may amplify the effects of IRP2-mediated translational repression. Levels of IRP1 mRNA were variable (Supplementary Fig. S1), consistent with the variable levels of IRP1 protein seen in Fig. 1D.

Because IRPs regulate ferritin H and TfR1 expression by binding to IREs, we next tested whether increased IRP expression in R5 and MCF7 breast cancer cells correlated with IRE binding activity using a RNA bandshift assay that measures binding to a radiolabeled IRE RNA probe. As shown in Fig. 1E, IRE binding activity was greatly enhanced in R5 and MCF7 breast cancer cells when compared with their nonmalignant counterparts. Thus, increased IRP expression in breast cancer cells is functional, in that the IRP proteins engage their IRE sequences. The enhanced binding of IRPs to IREs is consistent with the inhibition of ferritin H expression and increases in TfR1 expression seen in Fig. 1A and D.

Transient knockdown of IRP2, not IRP1, alters ferritin H and TfR1 expression

As protein levels of both IRP1 and IRP2 were increased in MCF7, R5, and MDA-MB-231 breast cancer cells (Fig. 1C and D), we next assessed whether IRP1 and IRP2 were equally important in regulating ferritin H and TfR1 expression in breast cancer. IRP1 and IRP2 were transiently knocked down in MDA-MB-231-Luc breast cancer cells using lentivirus shRNA expression vectors. As shown in Fig. 2A, knockdown of IRP1 had little effect on ferritin H or TfR1, whereas knockdown of IRP2 dramatically increased ferritin H expression and moderately decreased TfR1 expression. An inducible IRP2 knockdown system showed a similar reduction in TfR1 and increase in ferritin following IRP2 knockdown (Fig. 2B). As anticipated, the decrease in TfR1 and increase in ferritin was accompanied by a...
reduction in the labile iron pool (Fig. 2C). Consistent with the known role of IRPs in regulating TfR1 mRNA stability and ferritin H translation efficiency (26), knockdown of IRP2 decreased TfR1 but not ferritin H mRNA (Supplementary Fig. S2). These results indicate that IRP2 exerts its classic function as an iron regulator in breast cancer cells, and that IRP2 may play a more important role than IRP1 in regulating iron metabolism in breast cancer.

Knockdown of IRP2, not IRP1, inhibits cancer cell growth in vitro

To determine the role of IRP overexpression in breast cancer, we first examined the effect of IRP knockdown on cancer cell growth in vitro. As shown in Fig. 3A, knockdown of IRP2 significantly decreased cell growth as measured by a metabolic assay. To confirm that this inhibitory effect is specifically attributable to IRP2 knockdown, a rescue experiment was performed by transfecting IRP2 knockdown cells with an IRP2 expression vector that is not recognized by IRP2 shRNA (Fig. 3B). After the IRP2 protein was restored, the inhibition of cell growth was abolished, and cells grew at a similar rate as controls (Fig. 3B). To confirm the effect of IRP2 knockdown on cell survival, a clonogenic assay was performed. In accord with metabolic assays, IRP2 shRNA significantly inhibited colony formation (Fig. 3C and D). IRP2 knockdown similarly inhibited the growth of MCF7 cells, another breast cancer cell line (Supplementary Fig. S3). In contrast to results obtained with IRP2 knockdown, IRP1 knockdown did not...
appreciably inhibit cell growth (Fig. 3E). We tested whether IRP2 overexpression was sufficient to stimulate proliferation of MCF10A cells, a nonmalignant breast cell line. As shown in Supplementary Fig. S4, IRP2 overexpression did not enhance the growth of these cells, suggesting that the increased level of IRP2 in breast cancer cells is necessary, but not sufficient, to drive malignant growth.

IRP2 knockdown induces apoptosis

As shown in Fig. 2, IRP2 knockdown increases ferritin, decreases TfR1, and decreases metabolically available iron, creating an iron-deficient condition. As iron deficiency has previously been shown to trigger apoptosis (41, 42), we examined whether the inhibitory effect of IRP2 knockdown on cell growth is related to apoptosis by measuring the activity of caspase 3/7, proteases that are selectively activated during apoptosis (43). As shown in Fig. 4A, caspase activity was significantly increased after IRP2 knockdown. To confirm these results, we used flow cytometry to assess levels of annexin V as well as uptake of 7-AAD following IRP2 knockdown. Annexin V measures exposure of phosphatidylserine on the cell surface, and is a marker of early apoptosis (44), whereas 7-AAD permeability is an indicator of plasma membrane integrity and is associated with late-stage apoptosis (45). As shown in Fig. 4B, both these markers were elevated following IRP2 knockdown.

Knockdown of IRP2 in breast cancer cells suppresses tumor growth in vivo

We next assessed the role of IRP2 in breast tumor growth in vivo using a xenograft model. Triple-negative MDA-MB-231-Luc breast cancer cells were infected with lentivirus expressing IRP2 shRNA or a control scrambled shRNA, and injected orthotopically in the mammary fat pad of female nude mice. Two separate infections of MDA-MB-231-Luc cells with IRP2 knockdown lentiviruses were performed (termed IRP2 KD1 and IRP2 KD2); cells were implanted into mice 5 days following infection. Tumor growth was monitored by optical imaging beginning at day 11 following implantation, and by calipers when tumors became palpable (day 14). As shown in Fig. 5A–C, expression of IRP2 shRNA significantly decreased the rate of tumor growth compared with control as measured both by tumor volume and luciferase activity ($P < 0.0001$); this interaction remained significant if time was treated as a continuous variable ($P < 0.0001$). IRP2 KD1 and IRP2 KD2 did not differ significantly from each other. The magnitude of the inhibitory effect of IRP2 knockdown was substantial, and, at day 35, tumor volume in knockdown mice averaged less than 20% of control. When followed over a longer term, IRP2 knockdown significantly prolonged survival (Fig. 5D, log-rank statistic χ^2 value of 18.64, 2 degrees of freedom; $P < 0.0001$).

IRP2 expression is correlated with histologic grade and molecular subtype of human breast cancer

We next assessed the relationship between IRP2 expression and known prognostic features in breast cancer by analyzing expression data from surgically resected human breast tumors in a cohort of 251 consecutive breast cancer patients from Uppsala Sweden (39). As shown in Fig. 6A, IRP2 mRNA transcript level is associated with tumor grade and is highest in grade 3 poorly differentiated tumors. Sorlie and colleagues classified breast cancers into five intrinsic subtypes with...
significantly different outcomes: normal-like, luminal A (LumA), HER2-enriched, luminal B (LumB), and basal (46). We analyzed the distributions of IRP2 mRNA levels according to subtype. As shown in Fig. 6B, IRP2 mRNA is lower in the normal-like subtype, which has a favorable prognosis, and higher in the LumB and basal subtypes, which have a poorer prognosis. In addition, IRP2 mRNA was higher in the LumA subtype than in the normal-like subtype. Median IRP2 levels were higher in the ERBB2 subtype, although the difference between IRP2 expression in normal-like and ERBB2 subtypes did not attain statistical significance (Fig. 6B). IRP2 expression was not associated with distant metastasis-free survival (not shown).

To obtain insight into mechanisms responsible for IRP2 reduction in breast tumors, we performed a pathway analysis on a large cohort of 759 breast tumors (25). We ranked tumors based on IRP2 expression and selected the highest and lowest deciles (i.e., 76 tumors per group) for analysis of differential expression. We then ranked the genes by false-discovery adjusted P value (FDR) and selected the top 1% of probe sets on the array (q < 0.001; 448 probe sets) for further analysis. Of these, 369 were overexpressed in the IRP2 overexpressors (IRP2 "high" genes), and 79 were overexpressed in the IRP2 underexpressors (IRP2 "low" genes). We analyzed each group of genes by DAVID pathway analysis (47, 48). The "low" genes showed no enrichment of biologic terms after FDR adjustment. By contrast, the "high" genes showed highly significant term enrichment after FDR correction. We examined the Gene Ontology (GO) biologic process (GOTERM_BP) terms on this list (Supplementary Table S2). The seven top GO BP categories involved cellular catabolic processes. Although genes in these categories showed some overlap, they included cellular macromolecule catabolic process (P = 2.6 × 10^{-5}), proteolysis involved in cellular protein catabolic process (P = 1.6 × 10^{-5}), and modification-dependent macromolecule catabolic process (P = 2.1 × 10^{-5}), suggesting that genes involved in protein catabolism, such as ubiquitin-dependent proteolysis, are highly upregulated in the IRP2 overexpressors. Genes involved in protein transport and RNA processing also showed significant enrichment.
Discussion

In this report, we identify IRP2 as an IRP upregulated in breast cancer (Figs. 1 and 6). The increase in IRP2 had functional consequences, leading to an increase in IRE binding activity, which, in turn, was associated with a decrease in ferritin, an increase in TfR1, and an increase in labile iron (Figs. 1 and 2). These findings are consistent with the classical function of IRP2 in iron regulation, and suggest that enhanced IRP2 expression in breast cancer increases intracellularly available iron by increasing iron uptake and decreasing iron storage. Taken together with our previous observations that breast cancer cells have diminished expression of the Fe(II) exporter ferroportin (12), our results suggest a model in which decreased iron storage (low ferritin), increased iron uptake (high TfR1), and decreased iron export (low ferroportin) all contribute to supporting high levels of labile iron in breast cancer (Fig. 7). The results presented in this article further suggest that, at least in some breast cancers, this pathway may be driven by increased expression of IRP2.

Our studies suggest that IRP2 may be functionally more important than IRP1 in controlling iron metabolism in breast cells. Thus, knockdown of IRP2, but not IRP1, increased ferritin and decreased TfR1 in breast cells (Fig. 2). The nonredundant activity of IRP1 and -2 in breast cells is consistent with previous work demonstrating tissue-specific variations in the activity of IRP1 and -2 (49), as well as the different phenotypes of IRP1 and -2 knockout mice (50–52). Because IRP1 levels did not appear to affect cell growth (Fig. 3E) or proteins of iron metabolism in breast cancer cells in vitro (Fig. 2A), we did not pursue the role of IRP1 further. However, we note that effects of IRP1 in vitro do not always mirror their effects in vivo (53), and it remains possible that IRP1 may contribute to iron metabolism and/or breast tumor growth in vivo.

To examine the consequence of IRP2 on breast cancer growth, we reduced IRP2 expression in breast cancer cells and monitored the effect on tumor growth in vitro and in vivo. We hypothesized that by limiting bioactive (labile) iron, IRP2 knockdown would retard tumor growth. Results showed that knockdown of IRP2 did, indeed, reduce cell number and induce apoptosis in cell culture (Figs. 3 and 4). It is possible that IRP2 also exerts an effect on the cell cycle, although we did not study this directly. IRP2 knockdown similarly decreased the growth of breast cancer cells in mouse mammary fat pad xenografts, and prolonged the survival of tumor-bearing mice (Fig. 5). Two different vectors were used to knockdown IRP2 (KD1 and KD2). Greater knockdown was reproducibly achieved with KD2 (Figs. 3 and 5), which led to a greater reduction in growth of IRP2 KD cells in vitro (Fig. 3). The more modest reduction in IRP2 attained in KD1 cells was, nonetheless, sufficient to inhibit tumor growth in vivo, and both MDA-MB-231 KD1 and MDA-MB-231 KD2 cells exhibited a profound reduction in tumor growth in vivo (Fig. 5). We speculate that the enhanced effect of IRP2 knockdown on tumor growth in vivo may reflect an increased dependence of tumor cells on the IRP2 regulatory axis in the in vivo environment.

The effect of IRP2 overexpression on tumor growth has been studied in lung cancer using a tet-off system to overexpress IRP2 in H1299 lung cancer cells (54). Consistent with our observations, overexpression of IRP2 stimulated tumor growth when H1299 cells were injected subcutaneously in nude mice. However, in contrast to our observations, only a slight increase in TfR1 expression, and no change in ferritin H expression was observed, leading to the suggestion that the tumorigenic properties of IRP2 may not depend on its classic iron regulatory function (54). In contrast, our results suggest that changes in expression of IRP2 are associated with changes in levels of the
classic IRP2 targets TfR1 and ferritin. Differences between the two studies may be attributable to the different cancers investigated (lung vs. breast), or to differences in experimental design (overexpression vs. knockdown in the current report). In addition, it is possible that chronic overexpression may engender an adaptive response enabling ferritin to escape IRP2 regulation, or that IRP2 levels may already be saturating in cancer cells, such that further experimental upregulation does not lead to an incremental repression of ferritin.

To explore the relevance of these findings to human breast cancer, we examined the association between IRP2 expression and tumor grade using expression microarray data from a cohort study of 251 consecutive patients with breast cancer. The results demonstrate a strong association between IRP2 expression and tumor grade, with IRP2 gene expression highest in grade 3 (poorly differentiated) tumors (Fig. 6).

Furthermore, we assessed the expression of IRP2 in molecular subtypes of breast cancer. Breast cancer is a heterogeneous disease, comprising several subtypes that differ considerably in prognosis (46). Recent work has shown that these can be divided according to molecular profile into intrinsic subtypes termed normal-like, luminal A (LumA), luminal B.
Iron Regulatory Protein 2 and Breast Cancer

Figure 7. Model of the role of IRP2 in breast cancer. The increased level of IRP2 in breast cancer cells inhibits ferritin H translation and stabilizes TfR1 mRNA. Decreased ferritin H reduces iron storage while increased TfR1 increases iron uptake, increasing the metabolically available labile iron pool. Breast cancer cells have diminished expression of the Fe(II) exporter ferroportin (14). Overall, the level of intracellular iron is increased in breast cancer cells. The increased iron contributes to breast cancer growth.

(LumB), ERBB2, and basal (55). We observed that when compared with the normal-like subtype, IRP2 is upregulated in LumA, LumB and basal subtypes, but not in the ERBB2 subtype (which comprises ~20% of all breast cancers; Fig. 6; ref. 56). In contrast, we previously observed that ferroportin is down-regulated in all breast cancer molecular subtypes (12). Thus, upregulation of IRP2 may drive changes in ferroportin and iron metabolism in some, but not all, breast cancers. This interpretation is in line with our recent work demonstrating that there are multiple pathways through which breast tumors modulate expression of "iron genes" to acquire and retain more iron (25). For example, we previously reported that two separate gene dyads were particularly important in determining patient outcome: TfR1 and HFE (which control iron import), and ferroportin and hepcidin (which control iron export). Patients with a good prognosis frequently exhibited either a favorable iron import or iron export prognosis profile, but not both (25).

Our analysis did not demonstrate an association of IRP2 expression with distant metastasis-free survival, perhaps suggesting that IRP2 is important in tumor cell growth but does not influence processes involved in metastasis, such as migration and invasion. Alternatively, effects of IRP2 on metastasis-free survival may only become apparent when the expression of another gene is simultaneously affected. For example, we previously demonstrated that expression of hepcidin is only correlated with survival in patients with tumors that express elevated levels of ferroportin; in tumors with low levels of ferroportin, expression of hepcidin did not affect distant metastasis-free survival (25). Experiments directed at identifying such potential IRP2 partner genes are ongoing. Because metastases were not evident at the last timepoint imaged in our xenograft model (Supplementary Fig. S5), the question of the role of IRP2 on metastases could not be directly addressed in these experiments, and will require additional evaluation in the future.

Mechanisms underlying altered regulation of IRP2 in breast cancer may be complex. Our in vitro results demonstrate that increased levels of IRP2 mRNA are usually not uniformly associated with an increase in the IRP2 protein (Fig. 1; Supplementary Fig. S1), suggesting that both transcriptional and posttranscriptional mechanisms may contribute to elevated levels of IRP2 in breast cancer. Gene ontologic analysis of biologic processes altered in breast tumors unexpectedly showed that elevated IRP2 mRNA was strongly associated with alterations in catabolic processes, suggesting that IRP2 expression may be linked to larger transcriptional programs in breast cancer that drive catabolic biologic processes. Future experiments will be directed at interrogating how these processes are linked to increases in IRP2.

Taken together, our results demonstrate that IRP2 plays an important role in regulating iron metabolism and tumor growth in breast cancer. Changes in the proteins of iron metabolism in breast cancer might be explained by a primary modulation of IRP2 in cancer cells (Fig. 7), driven, at least in some tumors, by primary alterations in mRNA of IRP2. Knockdown of IRP2 dramatically inhibits tumor growth both in vitro and in vivo, further suggesting that IRP2 might be useful as a therapeutic target in breast cancer.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors' Contributions
Conception and design: W. Wang, Z. Deng, H. Hatcher, F.M. Torti, S.V. Torti
Development of methodology: W. Wang, Z. Deng, H. Hatcher, L. Tesfay, G. Sui
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): W. Wang, Z. Deng, H. Hatcher, L.D. Miller, X. Di
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): W. Wang, Z. Deng, H. Hatcher, L.D. Miller, X. Di, R.B. D’Agostino Jr, S.V. Torti
Writing, review, and/or revision of the manuscript: W. Wang, Z. Deng, H. Hatcher, L.D. Miller, L. Tesfay, R.B. D’Agostino Jr, F.M. Torti, S.V. Torti
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): H. Hatcher, X. Di
Study supervision: H. Hatcher, F.M. Torti

Grant Support
This work was financially supported by the NIH (grant no. R01 CA171101 to F.M. Torti).
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 29, 2013; revised November 6, 2013; accepted November 10, 2013; published OnlineFirst November 27, 2013.

References

