Highlights from Recent Cancer Literature

DEAR1, a Novel Tumor Suppressor That Regulates Cell Polarity and Epithelial Plasticity
Nanyue Chen, Seetharaman Balasenthil, Jacquelyn Reuther, and Ann McNeill Killary

Novel Drug Candidates for the Treatment of Metastatic Colorectal Cancer through Global Inverse Gene-Expression Profiling
Vera van Noort, Sebastian Schölch, Murat Iskar, Georg Zeller, Kristina Ostertag, Christine Schweitzer, Kristin Werner, Jürgen Weitz, Moritz Koch, and Peer Bork

These findings provide a rationale to reposition the antidepressant drug citalopram for treatment of late-stage colorectal cancers, with immediate implications for clinical evaluation of this drug.

Development of Novel ADCs: Conjugation of Tubulysin Analogues to Trastuzumab Monitored by Dual Radiolabeling
Ruth Cohen, Danielle J. Vugts, Gerard W.M. Visser, Marijke Stigter-van Walsum, Marije Bolijn, Marco Spiga, Paolo Lazzari, Sreejith Shankar, Monica Sani, Matteo Zanda, and Guus A.M.S. van Dongen

Radiolabeling both a synthetic tubulysin and the antibody to which it is attached facilitated preclinical validation of a new antibody-drug conjugate (ADC) with excellent tumor-targeting performance and efficacy.

Novel adiponectin signaling pathways revealed in this report are shown to promote immune tolerizing signals in dendritic cells that drive tumoral immune escape in cancer, suggesting broadly applicable new strategies for the immunometabolic control of cancer.

A secreted alarmin that is ubiquitously present in the tumor microenvironment provides a pivotal proinflammatory contribution to the differentiation and suppressive potency of myeloid-derived suppressor cells, an important driver of immune escape in many solid tumors.

A secreted alarmin that is ubiquitously present in the tumor microenvironment provides a pivotal proinflammatory contribution to the differentiation and suppressive potency of myeloid-derived suppressor cells, an important driver of immune escape in many solid tumors.

These findings reveal how metastasis-initiating breast cancer stem-like cells evade immune surveillance by natural killer cells.

This interesting study suggests that exosome secretion serves as a disposal mechanism for tumor suppressor microRNA during tumor progression, thereby enabling the acquisition of metastatic capabilities.
5772 AEG-1 Promoter–Mediated Imaging of Prostate Cancer
Akrita Bhatnagar, Yuchuan Wang, Ronnie C. Mease, Matthew Gabrielson, Polina Sysa, Il Minn, Gilbert Green, Brian Simmons, Kathleen Gabrielson, Siddik Sarkar, Paul B. Fisher, and Martin G. Pomper

Prezios: This study offers a sensitive, specific, and noninvasive method to image prostate cancer, including in bone metastases that lack a reliable clinical imaging agent, offering a preclinical proof of concept that rationalizes immediate clinical translation and evaluation in patients with advanced prostate cancer.

5782 Mycoplasma Hyorhinis Infection Promotes NF-κB–Dependent Migration of Gastric Cancer Cells
Hongying Duan, Ling Chen, Like Qu, Hua Yang, Sonya Wei Song, Yong Han, Meihua Ye, Wanyuan Chen, Xianglei He, and Chengchao Shou

Prezios: These findings unveil the effect of a mycoplasmic infection that has been linked to stomach cancer and other types of cancer but not understood in terms of its possible functional contributions, as revealed for the first time in this study.

5795 PCTAIRE1 Phosphorylates p27 and Regulates Mitosis in Cancer Cells
Teruki Yanagi, Maryla Krajewska, Shu-ichi Matsuzawa, and John C. Reed

Prezios: These results reveal an unexpected role for the distant CDK relative PCTAIRE1 in cancer cell division and offer a preclinical proof of concept for its candidacy as a new disease-selective target for cancer treatment.

PREVENTION AND EPIDEMIOLOGY

5808 The 19q12 Bladder Cancer GWAS Signal: Association with Cyclin E Function and Aggressive Disease

Prezios: This study reveals that the survival of endometrial cancer cells relies critically on GLUT6-mediated glucose transport, along with glycolytic and lipogenic metabolic pathways, with implications for therapeutic strategies in this setting.

5819 Copper Signaling Axis as a Target for Prostate Cancer Therapeutics

Prezios: Clinical trials in oncology of an approved dithiol compound have failed to produce efficacy, but the findings of this study suggest that this compound should be reexplored with the addition of copper to the regimen, particularly with regard to treatment of prostate cancers resistant to androgen ablation.

5832 Metabolic Vulnerabilities in Endometrial Cancer

Prezios: This study reveals the survival of endometrial cancer cells relies critically on GLUT6-mediated glucose transport, along with glycolytic and lipogenic metabolic pathways, with implications for therapeutic strategies in this setting.

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

5819 Copper Signaling Axis as a Target for Prostate Cancer Therapeutics

Prezios: Clinical trials in oncology of an approved dithiol compound have failed to produce efficacy, but the findings of this study suggest that this compound should be reexplored with the addition of copper to the regimen, particularly with regard to treatment of prostate cancers resistant to androgen ablation.

5832 Metabolic Vulnerabilities in Endometrial Cancer

Prezios: This study reveals the survival of endometrial cancer cells relies critically on GLUT6-mediated glucose transport, along with glycolytic and lipogenic metabolic pathways, with implications for therapeutic strategies in this setting.
Table of Contents

5846
In Vivo Localization of 90Y and 177Lu Radioimmunoconjugates Using Cerenkov Luminescence Imaging in a Disseminated Murine Leukemia Model
Ethan R. Balkin, Aimee Kenoyer, Johnnie J. Orozco, Alexandra Hernandez, Maziyar Shadman, Darrell R. Fisher, Damian J. Green, Mark D. Hylarides, Oliver W. Press, D. Scott Wilbur, and John M. Pagel
Précis: Results demonstrate the feasibility of using a novel noninvasive imaging technique called Cerenkov Light Imaging (CLI) to optimize the use of radioimmunoconjugates used to treat aggressive leukemias.

5855
SAR405838: An Optimized Inhibitor of MDM2–p53 Interaction That Induces Complete and Durable Tumor Regression
Shaomeng Wang, Wei Sun, Yujun Zhao, Donna McEachern, Isabelle Meaux, Cédric Barrière, Jeanne A. Stuckey, Jennifer L. Meagher, Longchuan Bai, Liu Liu, Cassandra Gianna Hoffman-Luca, Jianfeng Lu, Sanjeev Shangary, Shanghai Yu, Denizil Bernard, Angelo Aguilar, Odette Dos-Santos, Laurent Besret, Stéphane Guerif, Pascal Pannier, Dimitri Gorge-Bernat, and Laurent Debussche
Précis: Despite the risk of applying a selection for p53 mutations that escape MDM2 control, blocking MDM2-p53 protein–protein interaction has long been considered by many to offer an attractive cancer therapeutic strategy, a position strongly supported by the findings of this preclinical study.

5866
Dsh Homolog DVL3 Mediates Resistance to IGFIR Inhibition by Regulating IGF-RAS Signaling
Shan Gao, Ilirjana Bajrami, Clare Verrill, Asha Kigozi, Djamila Ouairet, Tamara Aleksic, Ruth Asher, Cheng Han, Paul Allen, Deborah Bailey, Stephan Feller, Takeshi Kashima, Nicholas Athanasou, Jean-Yves Blay, Sandra Schmitz, Jean-Pascal Machiels, Nav Upile, Terry M. Jones, George Thalmann, Shazad Q. Ashraf, Jennifer L. Wilding, Walter F. Bodmer, Mark R. Middleton, Alan Ashworth, Christopher J. Lord, and Valentine M. Macaulay
Précis: This mechanistic study is important because it addresses the lack of predictive biomarkers for stratifying and recruiting cancer patients who might benefit from IGF-1 inhibitors, a key gap in their clinical development as cancer drugs.

5878
AXL Inhibition Sensitizes Mesenchymal Cancer Cells to Antimitotic Drugs
Catherine Wilson, Xiaochen Ye, Thinh Pham, Eva Lin, Sara Chan, Erin McNamara, Richard M. Neve, Lisa Belmont, Hartmut Koeppen, Robert L. Yauch, Avi Ashkenazi, and Jeff Settleman
Précis: These findings challenge a purported role for AXL in drug resistance while offering a novel rationale to combine AXL-targeting drugs with antimitotic agents to eradicate invasive cancers.

TUMOR AND STEM CELL BIOLOGY

5891
β-Catenin Contributes to Lung Tumor Development Induced by EGFR Mutations
Précis: Drug resistance to EGF receptor antagonists in lung cancer may be mediated in part by activation of the β-catenin pathway, reinforcing its importance as an oncogenic driver in this setting.

5903
MYC Activates Stem-like Cell Potential in Hepatocarcinoma by a p53-Dependent Mechanism
Hirofumi Akita, Jens U. Marquardt, Marian E. Durkin, Mitsuteru Kitade, Daekwan Seo, Elizabeth A. Conner, Jesper B. Andersen, Valentina M. Factor, and Snorri S. Thorgerisson
Précis: Cancer stem-like cell populations in liver cancer appear to be expanded under conditions in which MYC is activated and p53 is downregulated, with potential implications for understanding etiology, progression, and treatment in this disease.

5914
Zfx Facilitates Tumorigenesis Caused by Activation of the Hedgehog Pathway
Colin J. Palmer, Jose M. Galan-Caridad, Stuart P. Weisberg, Liang Lei, Jose M. Esquilin, Gust F. Croft, Brandon Wainwright, Peter Canoll, David M. Owens, and Boris Reizis
Précis: This preclinical genetic study identifies new candidate targets for the control of tumors driven by the Hedgehog pathway, the aberrant activation of which has been implicated widely in many types of human solid tumors.
SIRT6 Promotes COX-2 Expression and Acts as an Oncogene in Skin Cancer
Mei Ming, Weinong Han, Baozhong Zhao, Nagalingam R. Sundaresan, Chu-Xia Deng, Mahesh P. Gupta, and Yu-Ying He

Précis: This study challenges an existing view of the Sir2-related protein SIRT6 as a tumor suppressor, finding instead in a genetically deficient mouse that it functions as an oncogene in the skin epidermis.

ABOUT THE COVER
The AXL receptor tyrosine kinase has been implicated as a cellular signaling protein that is specifically upregulated in the context of the epithelial-to-mesenchymal transformation seen in some epithelial cancers and the emergence of acquired drug resistance. Among the tumor types in which a mesenchymal, largely drug-refractory phenotype appears to be prevalent is triple-negative breast cancer (TNBC). This immunohistological image illustrates the expression of AXL in a TNBC tumor specimen, revealing punctate cytoplasmic staining of AXL in tumor cells as well as focal vascular staining. For details, see article by Wilson and colleagues on page 5878.