Breaking Advances

6375 Highlights from Recent Cancer Literature

Reviews

6377 A Genome-wide View of Microsatellite Instability: Old Stories of Cancer Mutations Revisited with New Sequencing Technologies
Tae-Min Kim and Peter J. Park

6383 Chimeric Antigen Receptor T-cell Therapy to Target Hematologic Malignancies
Saad Sirop Kenderian, Marco Ruella, Saar Gill, and Michael Kalos

Priority Report

6390 Discrepancies in Cancer Genomic Sequencing Highlight Opportunities for Driver Mutation Discovery
Andrew M. Hudson, Tim Yates, Yaoyong Li, Eleanor W. Trotter, Shameem Fawdar, Phil Chapman, Paul Lorigan, Andrew Blankin, Crispin J. Miller, and John Broughard
Precis: These findings highlight major discrepancies in mutational profiles of identical cancer cell lines sequenced by two different institutes, with implications for identifying previously undiscovered driver mutations.

Integrated Systems and Technologies

6397 Mathematical Modeling of Tumor Growth and Metastatic Spreading: Validation in Tumor-Bearing Mice
Niklas Hartung, Séveréne Mollard, Dominique Barbolosi, Assia Benabdallah, Guillaume Chapuisat, Gerard Henry, Sarah Giacometti, Athanasios Ilidias, Joseph Ciccolini, Christian Faivre, and Florence Hubert
Precis: This work advances efforts to predict metastatic spreading during the earliest stages of cancer, at points that could help clinicians make the best decisions on treatment strategies.

6408 Direct Chemosensitivity Monitoring Ex Vivo on Undissociated Melanoma Tumor Tissue by Impedance Spectroscopy
Heinz-Georg Jahnke, Sarah Poenick, Jan Maschke, Michael Kendler, Jan C. Simon, and Andrea A. Robitzki
Precis: This study presents a novel and more accurate tissue-based method to determine chemotherapeutic drug sensitivity using small fragments of tumor tissue, addressing a need to personalize therapy for patients to improve treatment outcomes.

Microenvironment and Immunology

6419 CXM: A New Tool for Mapping Breast Cancer Risk in the Tumor Microenvironment
Michael J. Fister, Bradley T. Endres, Nathan Rudemiller, Allison B. Sarkis, Stephanie Santarriaga, Ishan Roy, Angela Lemko, Aron M. Geurts, Carol Moreno, Sophia Ran, Shing-Wern Tsai, Jeffery De Pons, Daniel F. Carlson, Wenfang Tan, Scott C. Fahrenkrug, Zelmira Lazarova, Jozef Lazar, Paula E. North, Peter S. LaViolette, Michael B. Dwinell, James D. Shull, and Howard J. Jacob
Precis: These results establish the utility of a novel model of breast cancer that can localize genetic variants that affect breast cancer risk through actions on the tumor microenvironment, rather than the tumor cell itself.

6430 Ag-Presenting Cpg-Activated pDCs Prime Th17 Cells That Induce Tumor Regression
Leslie Guéry, Juan Dubrot, Carla Lippens, Dale Brighouse, Pauline Malinge, Magali Irla, Caroline Pot, Walter Reith, Jean-Marc Waldburger, and Stéphanie Hugues
Precis: This study identifies a new antigen-presenting strategy that may improve cancer immunotherapy involving Th17 cells.

6441 SA-4-1BBL and Monophosphoryl Lipid A Constitute an Efficacious Combination Adjuvant for Cancer Vaccines
Abhishek K. Srivastava, Gunes Dinc, Rajesh K. Sharma, Esma S. Yolcu, Hong Zhao, and Haval Shirwan
Precis: These results offer preclinical proof of concept for the use of a powerful new adjuvant system for tumor antigen-based cancer vaccines, with immediate implications for its clinical evaluation in the oncology clinic.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Summary</th>
<th>Précis</th>
</tr>
</thead>
<tbody>
<tr>
<td>6452</td>
<td>Host Deficiency in Caveolin-2 Inhibits Lung Carcinoma Tumor Growth by Impairing Tumor Angiogenesis</td>
<td>Yajun Liu, Sungchan Jang, Leike Xie, and Grzegorz Sowa</td>
<td>Loss of a protein that helps organize lipid rafts on the plasma membrane reduces cancerous cell growth, with possible implications for a generalized approach to cancer targeting.</td>
<td>These findings illuminate a core mechanism preventing genomic instability, with implications for understanding malignant progression.</td>
</tr>
<tr>
<td>6463</td>
<td>Histone H1.3 Suppresses H19 Noncoding RNA Expression and Cell Growth of Ovarian Cancer Cells</td>
<td>Magdalena Medrzycki, Yunzhe Zhang, Woeija Zhang, Kaixiang Cao, Chenyi Pan, Nathalie Lailler, John F. McDonald, Eric E. Bouhassira, and Yuhong Fan</td>
<td>These results provide new information about the regulation of a noncoding RNA in ovarian cancer cells, advancing work in a timely new area of RNA physiology and cancer.</td>
<td>These findings identify a particular mechanism of TGFβ signaling as a key element in the development of drug resistance in breast cancer.</td>
</tr>
<tr>
<td>6474</td>
<td>Oncogenic Properties of a Spermatogenic Meiotic Variant of Fer Kinase Expressed in Somatic Cells</td>
<td>Etai Yaffe, Elad Hikri, Yoav Elks, Ortal Cohen, Ariela Segal, Adar Makovski, Alexander Varvak, Sally Shpunin, and Uri Nir</td>
<td>This provocative study reveals a molecular alteration in the mitochondria of cancer cells that may represent a common pathophysiological root, with possible implications for broad-based treatments.</td>
<td>This study identifies a molecular signature and root oncogenic driver of serous papillary endometrial cancer, a relatively rare and poorly characterized form of uterine cancer that arises in post-menopausal women, with implications for improving its prognosis and treatment.</td>
</tr>
<tr>
<td>6486</td>
<td>BRG1/SMARCA4 Inactivation Promotes Non–Small Cell Lung Cancer Aggressiveness by Altering Chromatin Organization</td>
<td>Tess Orvis, Austin Hepperla, Vonn Walter, Shuie Song, Jeremy Simon, Joel Parker, Matthew D. Wilkerson, Nisarg Desai, Michael B. Major, D. Neil Hayes, Ian J. Davis, and Bernard Weissman</td>
<td>These results offer direct evidence of a tumor suppressor role for a core ATPase found in SWI/SNF chromatin regulatory complexes, the inactivation of which contributes to lung cancer aggressiveness by altering nucleosome positioning and expression at many cancer-associated genes.</td>
<td>This study provides a mechanistic rationale forblunting IGF/insulin-mediated survival signals in osteosarcoma, a pediatric tumor notorious for its intrinsic therapeutic resistance, as a strategy to improve treatment outcomes.</td>
</tr>
</tbody>
</table>

MOLECULAR AND CELLULAR PATHOBIOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Summary</th>
<th>Précis</th>
</tr>
</thead>
<tbody>
<tr>
<td>6499</td>
<td>Deubiquitination of γ-Tubulin by BAP1 Prevents Chromosome Instability in Breast Cancer Cells</td>
<td>Reihaneh Zarrizi, Julien Albert Menard, Mattias Belting, and Ramin Massouni</td>
<td>These findings illuminate a core mechanism preventing genomic instability, with implications for understanding malignant progression.</td>
<td>These findings illuminate a core mechanism preventing genomic instability, with implications for understanding malignant progression.</td>
</tr>
<tr>
<td>6509</td>
<td>The Notch Pathway Inhibits TGFβ Signaling in Breast Cancer through HEY1-Mediated Crosstalk</td>
<td>Liangfeng Han, Adam Diehl, Nguyen K. Nguyen, Preethi Korangath, Weiwen Teo, Soonweng Cho, Scott Kominsky, David L. Huso, Lionel Feigenbaum, Alan Rein, Pedram Arghani, Goran Landberg, Manfred Gessler, and Sarawatik Sukumar</td>
<td>These findings identify a particular mechanism of TGFβ signaling as a key element in the development of drug resistance in breast cancer.</td>
<td>These findings identify a particular mechanism of TGFβ signaling as a key element in the development of drug resistance in breast cancer.</td>
</tr>
<tr>
<td>6519</td>
<td>STAT1 Drives Tumor Progression in Serous Papillary Endometrial Cancer</td>
<td>Budiman Kharma, Tsukasa Baba, Noriomi Matsumura, Hyun Sook Kang, Junzo Hanamishi, Ryuusuke Murakami, Melissa M. McConechey, Samuel Leung, Ken Yamaguchi, Yuko Hosoe, Yumiko Yoshioka, Susan K. Murphy, Masaki Mandai, David G. Hunstman, and Ikuro Konishi</td>
<td>These results offer direct evidence of a tumor suppressor role for a core ATPase found in SWI/SNF chromatin regulatory complexes, the inactivation of which contributes to lung cancer aggressiveness by altering nucleosome positioning and expression at many cancer-associated genes.</td>
<td>These results offer direct evidence of a tumor suppressor role for a core ATPase found in SWI/SNF chromatin regulatory complexes, the inactivation of which contributes to lung cancer aggressiveness by altering nucleosome positioning and expression at many cancer-associated genes.</td>
</tr>
<tr>
<td>6531</td>
<td>IGF2 Preserves Osteosarcoma Cell Survival by Creating an Autophagic State of Dormancy That Protects Cells against Chemotherapeutic Stress</td>
<td>Takatsune Shimizu, Eiji Sugihara, Sayaka Yamaguchi-Iwai, Sakura Tamaki, Yuko Koyama, Walled Kamel, Arisa Ueki, Tomoki Ishikawa, Tatsuyuki Chiyoda, Satoru Osaka, Nobuyuki Onishi, Hiroko Ikeda, Junzo Kamei, Koichi Matsuo, Yumi Fukuchi, Toshihiro Naga, Junya Toguchida, Yoshiaki Tsuchiya, Akihiro Muto, and Hideyuki Saya</td>
<td>These results offer direct evidence of a tumor suppressor role for a core ATPase found in SWI/SNF chromatin regulatory complexes, the inactivation of which contributes to lung cancer aggressiveness by altering nucleosome positioning and expression at many cancer-associated genes.</td>
<td>These results offer direct evidence of a tumor suppressor role for a core ATPase found in SWI/SNF chromatin regulatory complexes, the inactivation of which contributes to lung cancer aggressiveness by altering nucleosome positioning and expression at many cancer-associated genes.</td>
</tr>
</tbody>
</table>
CTBP2 Modulates the Androgen Receptor to Promote Prostate Cancer Progression

Ken-ichi Takayama, Takashi Suzuki, Tetsuya Fujimura, Tomohiko Urano, Satoru Takahashi, Yukio Homma, and Satoshi Inoue

Précis: A transcriptional corepressor linked to prostate cancer susceptibility is found here to be an androgen-regulated gene that modulates pro-cancerous downstream signals from the androgen receptor.

Genetic Evidence of a Precisely Tuned Dysregulation in the Hypoxia Signaling Pathway during Oncogenesis

Précis: These findings offer evidence in humans to validate the “continuum” model of tumor suppression, advancing work beyond the mouse in developing a successor to the classic “two-hit” model in the field.

In Vivo Disruption of an Rb–E2F–Ezh2 Signaling Loop Causes Bladder Cancer

Mirentxu Santos, Mónica Martínez-Fernández, MartaDueñas, Ramón García-Escudero, Begoña Alfaya, Felipe Villacampa, Cristina Saiz-Ladera, Clotilde Costa, Marta Oteo, José Duarte, Víctor Martínez, M* José Gómez-Rodríguez, M* Luisa Martín, Manoli Fernández, Patrick Viator, Miguel A. Morcillo, Julien Sage, Daniel Castellano, Jose L. Rodriguez-Peralto, Federico de la Rosa, and Jesús M Paramio

Précis: This study addresses the gap in knowledge concerning the genetic and epigenetic underpinnings of bladder cancer development, which still remain relatively obscure.

Suppression of Deacetylase SIRT1 Mediates Tumor-Suppressive NOTCH Response and Offers a Novel Treatment Option in Metastatic Ewing Sarcoma

Précis: These findings offer a mechanistic rationale for the use of pharmacological inhibitors of a p53 deacetylase to treat cancers in which NOTCH acts a tumor suppressor.

High Serum Iron Is Associated with Increased Cancer Risk

Chi Pang Wen, June Han Lee, Ya-Ping Tai, Christopher Wen, Shiuian Be Wu, Min Kuang Tsai, Dennis P.H. Hsieh, Hung-Che Chiang, Chao Agnes Hsiung, Chung Y. Hsu, and XiFeng Wu

Précis: This large cohort study reveals that high levels of iron in blood serum is a risk marker for a variety of adult cancer, most dramatically in conferring a 3-fold increased risk for liver cancer.

Microenvironment-Derived HGF Overcomes Genetically Determined Sensitivity to Anti-MET Drugs

Selma Pennacchietti, Manuela Cazzanti, Andrea Bertotti, William M. Rideout III, May Han, Jeno Cyuris, Timothy Perera, Paolo M. Comoglio, Livio Trusolini, and Paolo Michieli

Précis: This study offers preclinical proof of concept for the use of antibodies that neutralize hepatocyte growth factor along with MET-targeting agents as a more effective therapeutic strategy to treat MET-dependent tumors.

Targeting Cancer Stem–like Cells as an Approach to Defeating Cellular Heterogeneity in Ewing Sarcoma

Sandrine Cornaz-Buros, Nicolo Riggi, Claudio DeVito, Alexandre Sarre, Igor Letovanec, Paolo Provero, and Ivan Stamenkovic

Précis: These results suggest a broadly and immediately applicable approach to improve the treatment of solid tumors that are marked by extensive cellular heterogeneity, likely driven by the plastic nature of cancer stem-like cells, with immediate applications for clinical evaluation.
MPHOSPH1: A Potential Therapeutic Target for Hepatocellular Carcinoma
Xinran Liu, Yafan Zhou, Xinyuan Liu, Anlin Peng, Hao Gong, Lizi Huang, Kaige Ji, Robert B. Petersen, Ling Zheng, and Kun Huang

Precis: These results highlight a critical role for a mitotic kinesin as a critical oncogenic driver and candidate therapeutic target in liver cancer.

Plk1 Inhibition Enhances the Efficacy of Androgen Signaling Blockade in Castration-Resistant Prostate Cancer
Zhe Zhang, Xianzeng Hou, Chen Shao, Junjie Li, Ji-Xin Cheng, Shihuan Kuang, Nihal Ahmad, Timothy Ratliff, and Xiaoqi Liu

Precis: These results offer a mechanistic rationale for evaluating Plk1 inhibitors in clinical development to enhance the efficacy of androgen signaling inhibitors in patients with castration-resistant prostate cancer.

MicroRNA100 Inhibits Self-Renewal of Breast Cancer Stem–Like Cells and Breast Tumor Development
Lu Deng, Li Shang, Shoumin Bai, Ji Chen, Xueyan He, Rachel Martin-Trevino, Shanshan Chen, Xiaoyan Li, Xiaojiao Meng, Bin Yu, Xiaolin Wang, Yajing Liu, Sean P. McDermott, Alexa E. Ariazi, Christophe Cinestier, Ingrid Ibarra, Jia Ke, Tahra Luther, Shawn G. Clouthier, Liang Xu, Ge Shan, Erwei Song, Herui Yao, Gregory J. Hannon, Stephen J. Weiss, Max S. Wicha, and Suling Liu

Precis: These studies provide insight into the mechanisms by which a microRNA gene regulates the self-renewal and tumor-forming potential of cancer stem-like cells, suggesting theranostic applications for this microRNA in identifying and targeting these cells for cancer treatment.

RABL6A Promotes G1–S Phase Progression and Pancreatic Neuroendocrine Tumor Cell Proliferation in an Rb1-Dependent Manner

Precis: These findings provide insights into Rb1 regulation and cell proliferation in pancreatic neuroendocrine tumors, potentially offering new targets for diagnosis and therapy of this disease.

A Hypusine–eIF5A–PEAK1 Switch Regulates the Pathogenesis of Pancreatic Cancer
Ken Fujimura, Tracy Wright, Jan Strnad, Sharmeela Kaushal, Cristina Metildi, Andrew M. Lowy, Michael Bouvet, Jonathan A. Kelber, and Richard L. Klemke

Precis: A selective posttranslational modification important for the development of pancreatic cancers may offer a new therapeutic strategy to treat this disease.

CD66c Cells in Cervical Precancers Are Partially Differentiated Progenitors with Neoplastic Traits
Chitrata Pattaibaraman, Shiyuan Hong, Vignesh K. Gunasekharan, Annapurna Pranatharthi, Jeevisha Bajaj, Sweta Srivastava, H. Krishnamurthy, Aswathy Ammuthumkandy, Venkat G. Giri, Laimonis A. Laimins, and Sudhir Krishna

Precis: Neoplastic cell subsets in cervical cancer emerge early in the disease and are linked to the life cycle of HPV virus, which drives this disease.

TRAP1 Is Involved in BRAF Regulation and Downstream Attenuation of ERK Phosphorylation and Cell-Cycle Progression: A Novel Target for BRAF-Mutated Colorectal Tumors
Valentina Condelli, Annamaria Piscazzi, Lorenza Sisini, Danilo Swann Matassa, Francesca Maddalena, Giacomo Lettini, Vittorio Simeon, Giuseppe Palladino, Maria Rosaria Amoroso, Stefania Trino, Franco Esposito, and Matteo Landriscina

Precis: This study illuminates the regulation of the BRAF oncoprotein at the level of its posttranslational ubiquitination.

Tumor-Derived Osteopontin Suppresses Antitumor Immunity by Promoting Extramedullary Myelopoiesis
Eun-Kyung Kim, Insu Jeon, Hyungseok Seo, Young-Jun Park, Boyeong Song, Kyoo-A Lee, Yongwoo Jang, Yeonseok Chung, and Chang-Yuil Kang

Precis: These findings unveil a novel immunosuppressive role for a factor widely associated with the inflammatory tumor microenvironment, with implications for a general therapeutic strategy in cancer treatment.
GPx2 Suppression of H2O2 Stress Links the Formation of Differentiated Tumor Mass to Metastatic Capacity in Colorectal Cancer
Benjamin L. Emmink, Jamila Laoukili, Anna P. Kipp, Jan Koster, Klaas M. Govaert, Szabolcs Fatrai, Andre Verheem, Ernst J.A. Steller, Regina Brigelius-Flohé, Connie R. Jimenez, Inne H.M. Borel Rinkes, and Onno Kranenburg

Précis: Results reveal an unexpected redox-controlled link between formation of a tumor mass and its capacity for metastasis.

RETRACTION
6731 Retraction: Novel HSP90 Inhibitor NVP-HSP990 Targets Cell-Cycle Regulators to Ablate Olig 2-Positive Glioma Tumor-Initiating Cells

CORRECTIONS
6733 Correction: Diffusion-Weighted Imaging in Cancer: Physical Foundations and Applications of Restriction Spectrum Imaging
6734 Correction: A Novel Wnt Regulatory Axis in Endometrioid Endometrial Cancer

ABOUT THE COVER
CD8⁺ T cells are critical for elimination of cancer. A major limitation of therapeutic cancer vaccines is their inability to activate and mobilize CD8⁺ T cells for infiltration into tumor. A vaccine formulation containing SA-4-1BBL and MPL as a novel adjuvant system shows robust efficacy in activating and recruiting CD8⁺ T cells into the tumor, with subsequent effective tumor destruction in preclinical models. For details, see article by Srivastava and colleagues on page 6441.