Cancer Research
Table of Contents

November 15, 2014 • Volume 74 • Number 22

BREAKING ADVANCES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6375</td>
<td>Highlights from Recent Cancer Literature</td>
</tr>
</tbody>
</table>

REVIEWS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6377</td>
<td>A Genome-wide View of Microsatellite Instability: Old Stories of Cancer Mutations Revisited with New Sequencing Technologies</td>
</tr>
<tr>
<td></td>
<td>Tae-Min Kim and Peter J. Park</td>
</tr>
<tr>
<td>6383</td>
<td>Chimeric Antigen Receptor T-cell Therapy to Target Hematologic Malignancies</td>
</tr>
<tr>
<td></td>
<td>Saad Sirop Kenderian, Marco Ruella, Saar Gill, and Michael Kalos</td>
</tr>
</tbody>
</table>

PRIORITY REPORT

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6390</td>
<td>Discrepancies in Cancer Genomic Sequencing Highlight Opportunities for Driver Mutation Discovery</td>
</tr>
<tr>
<td></td>
<td>Andrew M. Hudson, Tim Yates, Yaoyong Li, Eleanor W. Trotter, Shameem Fawdar, Phil Chapman, Paul Lorigan, Andrew Blankin, Crispin J. Miller, and John B. Bognard</td>
</tr>
</tbody>
</table>

INTEGRATED SYSTEMS AND TECHNOLOGIES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6397</td>
<td>Mathematical Modeling of Tumor Growth and Metastatic Spreading: Validation in Tumor-Bearing Mice</td>
</tr>
<tr>
<td></td>
<td>Niklas Hartung, Séverine Mollard, Dominique Barbolosi, Assia Benabdallah, Guillemette Chapuisat, Gerard Henry, Sarah Giacomel, Athanassios Iladis, Joseph Ciccolini, Christian Faivre, and Florence Hubert</td>
</tr>
</tbody>
</table>

MICROENVIRONMENT AND IMMUNOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6408</td>
<td>Direct Chemosensitivity Monitoring Ex Vivo on Undissociated Melanoma Tumor Tissue by Impedance Spectroscopy</td>
</tr>
<tr>
<td></td>
<td>Heinz-Georg Jahneke, Sarah Poenick, Jan Maschke, Michael Kendler, Jan C. Simon, and Andrea A. Robitzki</td>
</tr>
<tr>
<td></td>
<td>Précis: This study presents a novel and more accurate tissue-based method to test chemotherapeutic drug sensitivity using small fragments of tumor tissue, addressing the need to personalize therapy for patients to improve treatment outcomes.</td>
</tr>
<tr>
<td>6419</td>
<td>CXM: A New Tool for Mapping Breast Cancer Risk in the Tumor Microenvironment</td>
</tr>
<tr>
<td></td>
<td>Michael J. Flister, Bradley T. Endres, Nathan Rudemiller, Allison B. Sarkis, Stephanie Santarriaga, Ishan Roy, Angela Lemke, Aron M. Geurts, Carol Moreno, Sophia Ran, Shiring-Wern Tsaih, Jeffery De Pons, Daniel F. Carlson, Wenfang Tan, Scott C. Fahrenkrug, Zelmira Lazarova, Jozef Lazar, Paula E. North, Peter S. LaViolette, Michael B. Durinell, James D. Shull, and Howard J. Jacob</td>
</tr>
<tr>
<td></td>
<td>Précis: These results establish the utility of a novel model of breast cancer that can localize genetic variants that affect breast cancer risk through actions on the tumor microenvironment, rather than the tumor cell itself.</td>
</tr>
<tr>
<td>6430</td>
<td>Ag-Presenting CpG-Activated pDCs Prime Th17 Cells That Induce Tumor Regression</td>
</tr>
<tr>
<td></td>
<td>Leslie Guéry, Juan Dubrot, Carla Lippens, Dale Brighouse, Pauline Malinge, Magali Irla, Caroline Pot, Walter Reith, Jean-Marc Waldburger, and Stéphanie Hugues</td>
</tr>
<tr>
<td></td>
<td>Précis: This study identifies a new antigen-presenting strategy that may improve cancer immunotherapy involving Th17 cells.</td>
</tr>
<tr>
<td>6441</td>
<td>SA-4-1BBL and Monophosphoryl Lipid A Constitute an Efficacious Combination Adjuvant for Cancer Vaccines</td>
</tr>
<tr>
<td></td>
<td>Abhishek K. Srivastava, Gunes Dinc, Rajesh K. Sharma, Esma S. Yolcu, Hong Zhao, and Haval Shirwan</td>
</tr>
<tr>
<td></td>
<td>Précis: These results offer preclinical proof of concept for the use of a powerful new adjuvant system for tumor antigen-based cancer vaccines, with immediate implications for its clinical evaluation in the oncology clinic.</td>
</tr>
</tbody>
</table>
Host Deficiency in Caveolin-2 Inhibits Lung Carcinoma Tumor Growth by Impairing Tumor Angiogenesis

Yajun Liu, Sungchan Jang, Leike Xie, and Grzegorz Sowa

Précis: Loss of a protein that helps organize lipid rafts on the plasma membrane reduces cancerous cell growth, with possible implications for a generalized approach to cancer targeting.

MOLECULAR AND CELLULAR PATHOBIOLOGY

Histone H1.3 Suppresses H19 Noncoding RNA Expression and Cell Growth of Ovarian Cancer Cells

Magdalena Medrzycki, Yunzhe Zhang, Weijia Zhang, Kaixiang Cao, Chenyi Pan, Nathalie Lailler, John F. McDonald, Eric E. Bouhassira, and Yuhong Fan

Précis: These results provide new information about the regulation of a noncoding RNA in ovarian cancer cells, advancing work in a timely new area of RNA physiology and cancer.

Oncogenic Properties of a Spermatogenic Meiotic Variant of Fer Kinase Expressed in Somatic Cells

Etai Yaffe, Elad Hikri, Yoav Elkis, Ortal Cohen, Ariela Segal, Adar Makovski, Alexander Varvak, Sally Shpungin, and Uri Nir

Précis: This provocative study reveals a molecular alteration in the mitochondria of cancer cells that may represent a common pathophysiological root, with possible implications for broad-based treatments.

BRG1/SMARCA4 Inactivation Promotes Non–Small Cell Lung Cancer Aggressiveness by Altering Chromatin Organization

Tess Orvis, Austin Hepperla, Vonn Walter, Shuie Song, Jeremy Simon, Joel Parker, Matthew D. Wilkerson, Nisarg Desai, Michael B. Major, D. Neil Hayes, Ian J. Davis, and Bernard Weissman

Précis: These results offer direct evidence of a tumor suppressor role for a core ATPase found in SWI/SNF chromatin regulatory complexes, the inactivation of which contributes to lung cancer aggressiveness by altering nucleosome positioning and expression at many cancer-associated genes.

Deubiquitination of γ-Tubulin by BAP1 Prevents Chromosome Instability in Breast Cancer Cells

Reihaneh Zarrizi, Julien Albert Menard, Mattias Belting, and Ramin Massoumi

Précis: These findings illuminate a core mechanism preventing genomic instability, with implications for understanding malignant progression.

The Notch Pathway Inhibits TGFβ Signaling in Breast Cancer through HEY1-Mediated Crosstalk

Liangfeng Han, Adam Diehl, Nguyen K. Nguyen, Preeith Korangath, Weiwen Teo, Soonweng Cho, Scott Kominsky, David L. Huso, Lionel Feigenbaum, Alan Rein, Pedram Argani, Goran Landberg, Manfred Gessler, and Sarawati Sukumar

Précis: These findings identify a particular mechanism of TGFβ signaling as a key element in the development of drug resistance in breast cancer.

STAT1 Drives Tumor Progression in Serous Papillary Endometrial Cancer

Budiman Kharma, Tsukasa Baba, Noriomi Matsumura, Hyun Sook Kang, Junzo Hamanishi, Rysuke Murakami, Melissa M. McConney, Samuel Leung, Ken Yamaguchi, Yuku Hosoe, Yumiko Yoshioka, Susan K. Murphy, Masaki Mandai, David G. Hunstman, and Ikuo Konishi

Précis: This study identifies a molecular signature and root oncogenic driver of serous papillary endometrial cancer, a relatively rare and poorly characterized form of uterine cancer that arises in post-menopausal women, with implications for improving its prognosis and treatment.

IGF2 Preserves Osteosarcoma Cell Survival by Creating an Autophagic State of Dormancy That Protects Cells against Chemotherapeutic Stress

Précis: This study provides a mechanistic rationale for blunting IGF/insulin-mediated survival signals in osteosarcoma, a pediatric tumor notorious for its intrinsic therapeutic resistance, as a strategy to improve treatment outcomes.
CTBP2 Modulates the Androgen Receptor to Promote Prostate Cancer Progression
Ken-ichi Takayama, Takashi Suzuki, Tetsuya Fujimura, Tomohiko Urano, Satoru Takahashi, Yukio Homma, and Satoshi Inoue

Précis: A transcriptional corepressor linked to prostate cancer susceptibility is found here to be an androgen-regulated gene that modulates pro-cancerous downstream signals from the androgen receptor.

Genetic Evidence of a Precisely Tuned Dysregulation in the Hypoxia Signaling Pathway during Oncogenesis

Précis: These findings offer evidence in humans to validate the "continuum" model of tumor suppression, advancing work beyond the mouse in developing a successor to the classic "two-hit" model in the field.

In Vivo Disruption of an Rb–E2F–Ezh2 Signaling Loop Causes Bladder Cancer
Mirentxu Santos, Mónica Martinez-Fernández, Marta Dueñas, Ramón García-Escudero, Beñat Alfaya, Felipe Villacampa, Cristina Saiz-Ladera, Clotilde Costa, Marta Oteo, José Duarte, Víctor Martínez, Mª José Gómez-Rodríguez, Mª Luisa Martín, Manoli Fernández, Patrick Viator, Miguel A. Morcillo, Julien Sage, Daniel Castellano, Jose L. Rodríguez-Peralto, Federico de la Rosa, and Jesús M Paramio

Précis: This study addresses the gap in knowledge concerning the genetic and epigenetic underpinnings of bladder cancer development, which still remain relatively obscure.

Suppression of Deacetylase SIRT1 Mediates Tumor-Suppressive NOTCH Response and Offers a Novel Treatment Option in Metastatic Ewing Sarcoma

Précis: These findings offer a mechanistic rationale for the use of pharmacological inhibitors of a p53 deacetylase to treat cancers in which NOTCH acts a tumor suppressor.

High Serum Iron Is Associated with Increased Cancer Risk
Chi Pang Wen, June Han Lee, Ya-Ping Tai, Christopher Wen, Shiuan Be Wu, Min Kuang Tsai, Dennis P.H. Hsieh, Hung-Chieh Chiang, Chao Agnes Hsiung, Chung Y. Hsu, and Xifeng Wu

Précis: This large cohort study reveals that high levels of iron in blood serum is a risk marker for a variety of adult cancers, most dramatically in conferring a 3-fold increased risk for liver cancer.

Microenvironment-Derived HGF Overcomes Genetically Determined Sensitivity to Anti-MET Drugs
Selma Pennacchietti, Manuela Cazzanti, Andrea Bertotti, William M. Rideout III, May Han, Jeno Gyuris, Timothy Perera, Paolo M. Comoglio, Livio Trusolino, and Paolo Michieli

Précis: This study offers preclinical proof of concept for the use of antibodies that neutralize hepatocyte growth factor along with MET-targeting agents as a more effective therapeutic strategy to treat MET-dependent tumors.

Targeting Cancer Stem-like Cells as an Approach to Defeating Cellular Heterogeneity in Ewing Sarcoma
Sandrine Cornaz-Buros, Nicolo Riggi, Claudio DeVito, Alexandre Sarre, Igor Letovanec, Paolo Provero, and Ivan Stamenkovic

Précis: These results suggest a broadly and immediately applicable approach to improve the treatment of solid tumors that are marked by extensive cellular heterogeneity, likely driven by the plastic nature of cancer stem-like cells, with immediate applications for clinical evaluation.
MPHOSPH1: A Potential Therapeutic Target for Hepatocellular Carcinoma
Xinran Liu, Yafan Zhou, Xinyuan Liu, Anlin Peng, Hao Gong, Lizi Huang, Kaige Ji, Robert B. Petersen, Ling Zheng, and Kun Huang

Precis: These results highlight a critical role for a mitotic kinesin as a critical oncogenic driver and candidate therapeutic target in liver cancer.

Plk1 Inhibition Enhances the Efficacy of Androgen Signaling Blockade in Castration-Resistant Prostate Cancer
Zhe Zhang, Xianzeng Hou, Chen Shao, Junjie Li, Ji-Xin Cheng, Shihuana Kuang, Nihal Ahmad, Timothy Ratliff, and Xiaqi Liu

Precis: These results offer a mechanistic rationale for evaluating Plk1 inhibitors in clinical development to enhance the efficacy of androgen signaling inhibitors in patients with castration-resistant prostate cancer.

MicroRNA100 Inhibits Self-Renewal of Breast Cancer Stem–like Cells and Breast Tumor Development
Lu Deng, Li Shang, Shoumin Bai, Ji Chen, Xueyan He, Rachel Martin-Trevino, Shanshan Chen, Xiaoyan Li, Xiaoqie Meng, Bin Yu, Xiaolin Wang, Yajing Liu, Sean P. McDermott, Alexa E. Ariazi, Christophe Ginestier, Ingrid Ibarra, Jia Ke, Tahra Luther, Shawn G. Clouthier, Liang Xu, Ge Shan, Erwei Song, Herui Yao, Gregory J. Hannon, Stephen J. Weiss, Max S. Wicha, and Suling Liu

Precis: These studies provide insight into the mechanisms by which a microRNA gene regulates the self-renewal and tumor-forming potential of cancer stem-like cells, suggesting therapeutic applications for this microRNA in identifying and targeting these cells for cancer treatment.

RABL6A Promotes G1–S Phase Progression and Pancreatic Neuroendocrine Tumor Cell Proliferation in an Rb1-Dependent Manner

Precis: These findings provide insights into Rb1 regulation and cell proliferation in pancreatic neuroendocrine tumors, potentially offering new targets for diagnosis and therapy of this disease.

A Hypusine–eIF5A–PEAK1 Switch Regulates the Pathogenesis of Pancreatic Cancer
Ken Fujimura, Tracy Wright, Jan Strnad, Sharmeela Kaushal, Cristina Mettdi, Andrew M. Lowy, Michael Bouvet, Jonathan A. Kelber, and Richard L. Klemke

Precis: A selective posttranslational modification important for the development of pancreatic cancers may offer a new therapeutic strategy to treat this disease.

CD66c Cells in Cervical Precancers Are Partially Differentiated Progenitors with Neoplastic Traits

Precis: Neoplastic cell subsets in cervical cancer emerge early in the disease and are linked to the life cycle of HPV virus, which drives this disease.

TRAP1 Is Involved in BRAF Regulation and Downstream Attenuation of ERK Phosphorylation and Cell-Cycle Progression: A Novel Target for BRAF-Mutated Colorectal Tumors
Valentina Condelli, Annamaria Piscazzi, Lorenza Siisinni, Danilo Swann Matassa, Francesca Maddalena, Giacomo Lettini, Vittorio Simeon, Giuseppe Palladino, Maria Rosaria Amoroso, Stefania Trino, Franca Esposito, and Matteo Landriscina

Precis: This study illuminates the regulation of the BRAF oncoprotein at the level of its posttranslational ubiquitination.

Tumor-Derived Osteopontin Suppresses Antitumor Immunity by Promoting Extramedullary Myelopoiesis
Eun-Kyung Kim, Insu Jeon, Hyungsok Seo, Young-Jun Park, Boyeong Song, Kyoo-A Lee, Yongwoong Jang, Yeonseok Chung, and Chang-Yuil Kang

Precis: These findings unveil a novel immunosuppressive role for a factor widely associated with the inflammatory tumor microenvironment, with implications for a general therapeutic strategy in cancer treatment.
6717 GPx2 Suppression of H₂O₂ Stress Links the Formation of Differentiated Tumor Mass to Metastatic Capacity in Colorectal Cancer
Benjamin L. Emmink, Jamila Laoukili, Anna P. Kipp, Jan Koster, Klaas M. Govaert, Szabolcs Fatrai, Andre Verheem, Ernst J.A. Steller, Regina Brigelius-Flohé, Connie R. Jimenez, Inne H.M. Borel Rinkes, and Onno Kranenburg

Précis: Results reveal an unexpected redox-controlled link between formation of a tumor mass and its capacity for metastasis.

RETRACTION

6731 Retraction: Novel HSP90 Inhibitor NVP-HSP990 Targets Cell-Cycle Regulators to Ablate Olig 2-Positive Glioma Tumor–Initiating Cells

CORRECTIONS

6733 Correction: Diffusion-Weighted Imaging in Cancer: Physical Foundations and Applications of Restriction Spectrum Imaging

6734 Correction: A Novel Wnt Regulatory Axis in Endometrioid Endometrial Cancer

ABOUT THE COVER

CD8⁺ T cells are critical for elimination of cancer. A major limitation of therapeutic cancer vaccines is their inability to activate and mobilize CD8⁺ T cells for infiltration into tumor. A vaccine formulation containing SA-4-1BBL and MPL, as a novel adjuvant system shows robust efficacy in activating and recruiting CD8⁺ T cells into the tumor, with subsequent effective tumor destruction in preclinical models. For details, see article by Srivastava and colleagues on page 6441.
Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/74/22

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.