AKT1 and MYC Induce Distinctive Metabolic Fingerprints in Human Prostate Cancer

Carmen Priolo1, Saumyadipta Pyne1, Joshua Rose1, Erzsébet Ravasz Regan2, Giorgia Zadra3, Cornelia Photopoulos1, Stefano Cacciatore1, Denise Schultz2, Natalia Scaglia1, Jonathan McDunn4, Angelo M. De Marzo5, and Massimo Loda1,5,6,7

Abstract
Cancer cells may overcome growth factor dependence by deregulating oncogenic and/or tumor-suppressor pathways that affect their metabolism, or by activating metabolic pathways de novo with targeted mutations in critical metabolic enzymes. It is unknown whether human prostate tumors develop a similar metabolic response to different oncogenic drivers or a particular oncogenic event results in its own metabolic reprogramming. Akt and Myc are arguably the most prevalent driving oncogenes in prostate cancer. Mass spectrometry–based metabolite profiling was performed on immortalized human prostate epithelial cells transformed by AKT1 or MYC, transgenic mice driven by the same oncogenes under the control of a prostate-specific promoter, and human prostate specimens characterized for the expression and activation of these oncoproteins. Integrative analysis of these metabolomic datasets revealed that AKT1 activation was associated with accumulation of aerobic glycolysis metabolites, whereas MYC overexpression was associated with dysregulated lipid metabolism. Selected metabolites that differentially accumulated in the MYC-high versus AKT1-high tumors, or in normal versus tumor prostate tissue by untargeted metabolomics, were validated using absolute quantitation assays. Importantly, the AKT1/MYC status was independent of Gleason grade and pathologic staging. Our findings show how prostate tumors undergo a metabolic reprogramming that reflects their molecular phenotypes, with implications for the development of metabolic diagnostics and targeted therapeutics. Cancer Res; 74(24); 7198–204. ©2014 AACR.

Introduction
Metabolomics allows unbiased identification of subtle changes in metabolite profiles as affected by signaling pathways or genetic factors (1–3). Metabolic alterations may represent the integration of genetic regulation, enzyme activity, and metabolic reactions. In addition, because the known metabolome is considerably smaller than the number of genes, transcripts, or proteins, metabolomics may more clearly characterize altered cellular networks (4). Clinically, metabolic imaging technologies such as PET, can be used to monitor disease progression and drug response (5).

Genomic loss of the PTEN locus, leading to constitutive activation of the PI3K/AKT pathway, and 8q amplification, including the MYC gene, occurs in 30% to 70% and approximately 30% of prostate tumors, respectively (6), representing the most frequent genetic alterations in prostate cancer. Both activated AKT and in particular MYC overexpression faithfully reproduce the stages of human prostate carcinogenesis in genetically engineered mice (7, 8).

While MYC promotes glutaminolysis (9, 10), AKT activation is associated with enhanced aerobic glycolysis (the "Warburg effect"; ref. 11) and/or increased expression of glycolytic enzymes in different cell types, including prostate (12). However, the impact of these oncogenes (or the genomic alterations causing their activation) on the metabolome of human prostate tumors has not yet been elucidated.

Materials and Methods
Generation of AKT1- and MYC-overexpressing RWPE-1
Immortalized human prostate epithelial RWPE-1 cells were obtained from Novartis and confirmed to be nontumorigenic (growth in soft agar) before performing the experiments. RWPE-1 was authenticated by DDC Medical. Cells were
infected with pBABE vector alone (RWPE–EV), myristoylated AKT1 (RWPE–AKT1) or MYC (RWPE–MYC). Briefly, cells were transduced through infection in the presence of polybrene (8 μg/mL), and retroviral supernatants were replaced with fresh media after 4 hours of incubation. Twenty-four hours later, puromycin selection (1 μg/mL) was started. Cells were grown in phenol red-free Eagle’s Minimum Essential Medium (MEM) supplemented with 10% FBS, 0.1 mmol/L nonessential amino acids, 1 mmol/L sodium pyruvate, and penicillin–streptomycin.

Transgenic mice

Ventral prostate lobes were isolated from 12- to 13-week-old MParkin (FVB-Tg[Psbn-AKT1]9Wrs/Nci; ref. 7) and Lo-Myc (FVB-Tg[Psbn-MYC]6Key/Nci; ref. 8) transgenic mice and from age-matched wild-type mice (FVB/N) within 10 minutes after CO2 euthanasia. Animals’ care was in accordance with institutional guidelines (Institutional Animal Care and Use Committee). MParkin mice were generated and raised at the Dana-Farber Cancer Institute’s Facility (7). Lo-MYC and wild-type mice were obtained from the NCI Frederick mouse repository (7). MParkin mice were counted for an average of 500 cells per section. The Fisher test was applied using GraphPad Prism 5.0, and significance was defined with P < 0.05 (see also Supplementary Materials and Methods).

Human prostate tissues

Fresh-frozen, radical prostatectomy samples approved by the Institutional Review Board were obtained from the institutional tissue repository at the Dana-Farber Cancer Institute and Brigham and Women’s Hospital (Boston, MA; 61 tumors and 25 normals).

The percentage of tumor was assessed by top and bottom frozen sections. To obtain ≥80% tumor purity, normal tissue was trimmed and the tumor sample was reembded in optimal cutting temperature without thawing. Sections (two or three 8-μm sections) were cut from these tissue blocks and DNA, RNA, and proteins were purified (AllPrep DNA/RNA Micro Kit; Qiagen Inc.). The remainder was processed for metabolite extraction (Supplementary Fig. S1C).

Metabolite profiling

RWPE–EV, RWPE–AKT1, and RWPE–MYC cells in monolayer culture were trypsinized for 4 minutes at 37°C. Following trypsin neutralization with 10% FBS-supplemented MEM, cells were centrifuged, and cell pellets were washed twice with cold PBS before freezing. A recovery standard was added before the first step in the extraction process for quality control purposes. Aqueous methanol extraction was used to remove the protein fraction. The resulting extract was divided into fractions for analysis by UPLC/MS-MS (positive mode), UPLC/MS-MS (negative mode), and GC/MS. Samples were placed on a TurboVap (Zymark) to remove the organic solvent. Each sample was assayed for phosphorylated AKT1 and MYC expression by immunoblotting. Levels of phosphorylated AKT1 and MYC were not associated with the Gleason grade of the tumors (Supplementary Fig. S1A). K-means clustering of phosphorylated AKT1 and MYC densitometric values (Fig. 1C) was conducted to segregate four prostate tumor subgroups, that is, phosphorylated AKT1-high/MYC-high (6/60, 10%), phosphorylated AKT1-high/MYC-low (21/60, 35%), phosphorylated AKT1-low/MYC-high (9/60, 15%), and phosphorylated AKT1-low/MYC-low (24/60, 40%; Fig. 1C and Supplementary Fig. S1B).

To define differential metabolic reprogramming induced by the sole activation of AKT1 or overexpression of MYC, we performed mass spectrometry–based metabolomics of prostate epithelial nontransformed RWPE-1 cells genetically engineered with constructs encoding myristoylated AKT1 or MYC, and transgenic mice expressing human myristoylated AKT1 or MYC in the prostate (Fig. 1A and B). More than 50 metabolite sets (KEGG annotation—Supplementary Dataset S1) were
tested using single-sample Gene Set Enrichment Analysis (GSEA). A clear clustering of phosphoAKT1-high versus MYC-high samples was noticeable within the genetically engineered cell and mouse datasets, with phosphoAKT1-high being associated with the strongest phenotype in a distinct cluster compared with MYC-high and control samples that appeared closer together, yet recognizable as two subclusters (Fig. 2A and B). Human tumors fell in three clusters (defined by Silhouette analysis), in which the phosphoAKT1-low/MYC-high tumors and the phosphoAKT1-high/MYC-low tumors differentially segregated (Fisher test, \(P < 0.01 \); Fig. 2C). Interestingly, although both RWPE–AKT1 and RWPE–MYC cells showed significant changes in intermediates of glucose metabolism and higher enrichment of the glycolysis set compared with RWPE–EV cells (Fig. 2A), only RWPE–AKT1 cells exhibited accumulation of lactate (aerobic glycolytic phenotype; Supplementary Fig. S2A). These results were even more pronounced in vivo, with exclusively the MPAKT mouse prostate samples being characterized by both high levels of lactate and enrichment of the glycolysis set (Fig. 2B and Supplementary Fig. S2A). When applied to primary nonmetastatic prostate tumors stratified by the expression levels of phospho-AKT1 and MYC, the pathway enrichment analysis revealed that MYC-high tumors have a negative enrichment of glycolysis compared with nontumoral prostate tissues (Fig. 2C and Supplementary Fig. S2A). Interestingly, normal prostate tissues may also be metabolically heterogeneous and exhibit a glycolytic phenotype (14), potentially attenuating the metabolic differences between normal and tumor tissue in phosphoAKT1-high tumors.

Next, we compared directly the AKT1 and MYC metabolic signatures (Supplementary Datasets S2 and S3). Pathway enrichment analysis by GSEA was used to determine which metabolic pathways were commonly enriched across the genetically engineered models and the prostate tumor subgroups defined above, specifically comparing AKT1-high with MYC-high background. Gene set-size-normalized enrichment scores (NES) from GSEA were used to determine the extent and direction of enrichment for each pathway in the three datasets. Five pathways with highly positive NES and two pathways with highly negative NES across and common to the datasets were defined as outliers (Fig. 3A and Supplementary Fig. S3A and S3B). These results link AKT1 activation with glycolysis and other glucose-related pathways, including the pentose phosphate shunt and fructose metabolism, and MYC overexpression with deregulated lipid metabolism (Fig. 3A and Supplementary Fig. S3C). On the one hand, enrichment of the glycerophospholipid, glycerolipid, and pantetheine-CoA biosynthesis metabolite sets, as well as higher levels of lipogenesis-feeding metabolites such as citrate, were distinctively associated with MYC overexpression in RWPE cells, suggesting a MYC-dependent deregulation of synthesis and/or turnover of membrane lipids. Interestingly, higher levels of both omega-3 (docosapentaenoate and docosahexaenoate) and omega-6 (arachidonate, docosadienoate, and dihomo-linolenate) fatty acids were found in Lo-MYC mice and in phosphoAKT1-low/MYC-high prostate tumors relative to MPAKT mouse and phosphoAKT1-high/MYC-low tumors (Supplementary Dataset S2). Prostate cells may use unsaturated, exogenous essential fatty acids early during transformation, perhaps as energy sources during adaptation to the in vivo niche (15). As a validation of untargeted metabolomics, absolute concentrations of selected metabolites were measured. Oleic, arachidonic, and docosahexaenoic acids were validated in phosphoAKT1-high/MYC-low tumors (\(n = 14 \)) and phosphoAKT1-low/MYC-high tumors (\(n = 5 \)). Oleic acid can be
generated in the cell via desaturation of stearic acid by stearyl-CoA delta-9-desaturase (SCD1). Consistent with the semiquan-
titative data, all of these fatty acids were present at a signifi-
cantly higher concentration in MYC-high tumors (Fig. 3B). Addi-
tional validation of the untargeted metabolomics includ-
ed the tumor-associated 2-aminoadipic acid, an intermediate of lysine metabolism, and creatine, which was increased in phos-
phoAKT1-high/MYC-low versus phosphoAKT1-low/
MYC-high tumors (Supplementary Fig. S4).

Next, we asked whether the metabolome changes associated with the oncogenic transformation of prostate epithelial cells are accompanied by transcriptional changes in key metabolic enzymes. Consistent with the metabolite profiling of RWPE-1 cells, glycolytic components such as the glucose transporter GLUT-1 and the hexokinase 2 were increased upon AKT1 overexpression/activation (Fig. 4A). As expected, downstream targets of AKT1 such as HIF1α (hypoxia-inducible factor 1) and VEGF-A were induced in AKT1-overexpressing cells (Supple-
mentary Fig. S5A). RWPE–MYC cells showed increased expres-
sion of two key enzymes of the glycerophospholipid metab-
olism, choline kinase alpha, and cholinephosphotransferase-1
(Fig. 4A). At the proteins level, hexokinase 2 was increased by
AKT1 activation, and choline kinase alpha was induced by
MYC overexpression (Fig. 4B). Consistent with published data
(10), MYC induced the expression of glutaminase, a glutami-
nolytic enzyme responsible for the conversion of glutamine into glutamate, at both the mRNA and the protein levels (Fig.
4A and B), resulting in an increased amount of glutamate relative to RWPE–EV. AKT1 activation strongly increased the
expression of the neutral amino acid transporter ASCT2 (Fig.
4A and B). Interestingly, mRNA and protein expression of fatty
acid synthase (FASN) was higher in RWPE–AKT1 and RWPE–
MYC cells compared with RWPE–EV cells (Supplementary Fig.
S5A and S5C), as well as in prostate tumors compared with
normal prostate tissue samples (Supplementary Fig. S5B and
S5C). Although FASN expression can be induced downstream
of AKT1 via mTORC1-mediated SREBP1 (sterol regulatory
element-binding protein 1) activation, a link between increased de novo lipogenesis and aerobic glycolysis has been
proposed in various tumor types (16, 17), suggesting a multi-
faceted role of FASN.

Sarcosine, an intermediate of the glycine and choline metab-
olism previously identified as a progression marker in prostate
cancer (18), was increased exclusively in the prostate of

Figure 2. Metabolic pathway analysis in phosphoAKT1-high or MYC-high samples relative to controls. A–C, heatmap representation of NESs (P < 0.05) for KEGG pathways in individual samples of the three datasets (RWPE-1 cells, MPAKT and Lo-MYC mice, and human prostate tissues). Light blue/yellow colors are used to denote high/low enrichment, as in the respective color scales. Hierarchical clustering is used for unsupervised identification of the higher-level enrichment classes. The phenotypic labels of the samples (control, phosphoAKT1-high, and MYC-high) are indicated as a colored band on top of the heatmap, whereas the dendrogram represents the distances among them.
Lo-MYC mice (Supplementary Fig. S2B). Associated with the sarcosine increase were a concomitant elevation of the intermediate betaine and a decrease in glycine levels (Supplementary Fig. S2B). These results reflect a dysregulation of the sarcosine pathway by MYC.

To determine whether genomic alterations at the PTEN or MYC loci are predictive of active AKT1 or MYC overexpression in prostate tumors, we performed SNP arrays using genomic DNA isolated from the same sections of each tumor or non-tumoral matched control sample assayed by immunoblotting (phosphorylated AKT1 and MYC). SNP arrays revealed that 20% of these tumors harbored 10q loss and 18% harbored 8q gain, including the MYC locus (Supplementary Fig. S6), whereas cooccurrence of PTEN loss and MYC copy gain was found in

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Cell</th>
<th>Mouse</th>
<th>Human</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycolysis gluconeogenesis</td>
<td>1.36</td>
<td>1.28</td>
<td>1.59</td>
<td>1.41</td>
</tr>
<tr>
<td>Fructose and mannose metabolism</td>
<td>1.46</td>
<td>1.22</td>
<td>1.31</td>
<td>1.33</td>
</tr>
<tr>
<td>Pentose phosphate pathway</td>
<td>1.46</td>
<td>0.99</td>
<td>1.42</td>
<td>1.29</td>
</tr>
<tr>
<td>Propanoate metabolism</td>
<td>0.87</td>
<td>1.42</td>
<td>1.18</td>
<td>1.19</td>
</tr>
<tr>
<td>Amino sugar and nucleotide sugar metab.</td>
<td>1.29</td>
<td>0.66</td>
<td>1.53</td>
<td>1.16</td>
</tr>
<tr>
<td>Glycerolipid metabolism</td>
<td>−1.04</td>
<td>−0.99</td>
<td>−0.85</td>
<td>−0.96</td>
</tr>
<tr>
<td>Fatty acid biosynthesis</td>
<td>−0.95</td>
<td>−0.87</td>
<td>−1.34</td>
<td>−1.06</td>
</tr>
</tbody>
</table>

Figure 3. Overall differential metabolite set enrichments in phosphoAKT1-high versus MYC-high samples. A, simultaneous GSEA measurements in all three datasets (cultured cells, mouse prostate, and human tumors) are shown (left). This information is depicted as dots in three-dimensional space, where each dot represents a particular pathway and each dimension a dataset. Enrichment of a pathway in phosphoAKT1-high versus MYC-high samples or vice versa is defined by a positive or negative score, respectively. The top five positively enriched pathways (i.e., in phosphoAKT1-high samples) and the top two negatively enriched pathways (i.e., in MYC-high samples) in all three datasets, as identified with outlier analysis (Supplementary Fig. S3), are shown as orange and green dots, respectively. NESs of the seven pathways identified as outliers in the three datasets and the average of these scores are shown per each set (KEGG pathway) on the right. B, semiquantitative (top) and absolute (bottom) measurements of arachidonic acid, docosahexaenoic acid, and oleic acid in phosphoAKT1-high/MYC-low (orange) and phosphoAKT1-low/MYC-high (green) tumor samples. The Mann–Whitney test was applied; *, *P < 0.05 and **, *P < 0.01.
3% of tumors, consistent with published data (19). Importantly, the genomic alterations accounted for 26% (7/27) of phosphoAKT1-high tumors and for 13% (2/15) of MYC-high tumors (Supplementary Fig. S6), as expected from previous reports (20).

Finally, to identify unique mRNA expression changes in phosphoAKT1-high/MYC-low and phosphoAKT1-low/MYC-high prostate tumors, we performed a qPCR-based expression profiling analysis of 28 metabolic genes (Supplementary Fig. S5D) in tumor relative to normal prostate tissues. Consistent with the MYC-dependent negative enrichment for the glycolytic pathway (Fig. 2C and Supplementary Fig. S2A), high MYC expression in a phosphoAKT1-low context in human tumors was associated with decreased mRNA expression of GLUT-1 (Fig. 4C). This finding was specific to the MYC-high tumors and not generalizable to all tumors versus normal prostate tissues (Supplementary Fig. S5B). Also, no decrease in GLUT-1 expression was found in phosphoAKT1-high/MYC-high tumors (Fig. 4C). A significant association between GLUT-1 high expression and phosphoAKT1-high status was found by immunohistochemistry in a subset of this cohort (Fig. 4D and Supplementary Fig. S5C). Seven of 14 phosphoAKT1-low tumors were MYC-high, and only 14% (1/7) of these showed high GLUT-1, whereas 85% (6/7) had low or no GLUT-1 expression (Fig. 4D).

Altogether, these results suggest that AKT1 activation may be critical to maintain high GLUT-1 levels in prostate cancer cells, and that AKT1-independent MYC activation can potentially affect glucose uptake in prostate tumors.

In summary, our data demonstrate that individual prostate tumors have distinct metabolic phenotypes, resulting from their genetic complexity, and reveal a novel potential metabolic role for MYC in prostate cancer. The evidence provided...
links AKT1 or MYC activation with differential deregulation of glucose-related pathways as well as lipid metabolism in human prostate cancer. To our knowledge, this is the first report of oncogene-associated metabolic signatures as the result of an integrative analysis of cultured cells, mouse models, and human tumors. This opens novel avenues for the metabolic imaging and therapeutic targeting of patients with prostate cancer.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: C. Priolo, M. Loda
Development of methodology: C. Priolo, S. Pyne, M. Loda
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): C. Priolo, J. Rose, G. Zadra, D. Schultz, N. Scaglia, J. McDunn, A.M. De Marzo, M. Loda
Analysis and interpretation of data (e.g., statistical analysis, biosstatistics, computational analysis): C. Priolo, S. Pyne, E.R. Regan, S. Cacciatore, N. Scaglia, J. McDunn, M. Loda

References

AKT1 and MYC Induce Distinctive Metabolic Fingerprints in Human Prostate Cancer

Carmen Priolo, Saumyadipta Pyne, Joshua Rose, et al.

Updated version
Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-14-1490

Supplementary Material
Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2014/10/16/0008-5472.CAN-14-1490.DC1

Cited articles
This article cites 20 articles, 5 of which you can access for free at: http://cancerres.aacrjournals.org/content/74/24/7198.full.html#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/74/24/7198.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.