BREAKING ADVANCES
977 Highlights from Recent Cancer Literature

REVIEW
979 Light In and Sound Out: Emerging Translational Strategies for Photoacoustic Imaging
S. Zackrisson, S.M.W.Y. van de Ven, and S.S. Gambhir

PRIORITY REPORT
1005 Cell Lineage Tracing Reveals a Biliary Origin of Intrahepatic Cholangiocarcinoma
Précis: The findings from this preclinical study support an argument that the cell of origin of intrahepatic cholangiocarcinoma is able to arise from biliary epithelia, with potential therapeutic implications for this treatment-refractory cancer.

MICROENVIRONMENT AND IMMUNOLOGY
1011 Oligodendrocyte Progenitor Cells Promote Neovascularization in Glioma by Disrupting the Blood–Brain Barrier
Yujie Huang, Caitlin Hoffman, Prajwal Rajappa, Joon-Hyung Kim, Wenhao Hu, Jason Huse, Zhongshu Tang, Xuri Li, Babette Weksler, Jacqueline Bromberg, David C. Lyden, and Jeffrey P. Greenfield
Précis: This important study reports the discovery of a novel stromal cell type in the brain tumor microenvironment that is crucial for vascular remodeling and neoangiogenesis processes needed for brain tumor progression.

1022 GPR56 Inhibits Melanoma Growth by Internalizing and Degrading Its Ligand TG2
Liquan Yang, Scott Friedland, Nancy Corson, and Lei Xu
Précis: A tumor-promoting function of extracellular matrix that is found to be reversible might offer a therapeutic strategy for reprogramming the tumor microenvironment to assist in cancer control.

MOLECULAR AND CELLULAR PATHOBIOLOGY
1056 Accumulation of Cytosolic Calcium Induces Necroptotic Cell Death in Human Neuroblastoma
Motonari Nomura, Ayumi Ueno, Kotaro Saga, Masahiro Fukuzawa, and Yasufumi Kaneda
Précis: These findings define an upstream pathway for activation of the programmed necrosis process known as necroptosis, with potential therapeutic implications in cancer cells.

1045 PD-1 and Tim-3 Regulate the Expansion of Tumor Antigen–Specific CD8+ T Cells Induced by Melanoma Vaccines
Précis: These seminal results show how the administration of immune checkpoint inhibitors with cancer vaccines may vastly improve their antitumor efficacy, a harbinger of great promise for this type of active immunotherapy in cancer treatment.

1032 Collagen Signaling Enhances Tumor Progression after Anti-VEGF Therapy in a Murine Model of Pancreatic Ductal Adenocarcinoma
Précis: This study identifies a new pathway induced by collagen I that stimulates tumor progression after anti-VEGF therapy.
Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Precis</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1067</td>
<td>Inducible Nitric Oxide Synthase Drives mTOR Pathway Activation and Proliferation of Human Melanoma by Reversible Nitrosylation of TSC2</td>
<td>Esther Lopez-Rivera, Padmini Jayaraman, Falguni Parikh, Michael A. Davies, Suhendan Ekmeckioglu, Sudeh Izadmehr, Denáí R. Milton, Jerry E. Chipuk, Elizabeth A. Grimm, Yeriel Estrada, Julio Aguirre-Ghiso, and Andrew G. Sikora</td>
<td>These findings suggest new insights into how the mTOR pathway may be driven in cancer cells by nitrosylation of a key upstream activator, with clinical implications on how to improve melanoma therapy using NOS inhibitors.</td>
<td></td>
</tr>
<tr>
<td>1079</td>
<td>NUP98 Fusion Oncoproteins Promote Aneuploidy by Attenuating the Mitotic Spindle Checkpoint</td>
<td>Valentina Salsi, Silvia Ferrari, Paolo Gorello, Sebastian Fantini, Francesca Chiavolelli, Cristina Mecucci, and Vincenzo Zappavigna</td>
<td>These findings suggest a mechanistic basis to grasp how an oncprotein that promotes whole chromosome instability can cause acute myeloid leukemia, with implications for understanding the relationship between aneuploidy and cancer.</td>
<td></td>
</tr>
<tr>
<td>1091</td>
<td>Activation of the NOTCH Pathway in Head and Neck Cancer</td>
<td>Wenyue Sun, Daria A. Gaykalova, Michael F. Ochs, Elizabeth Mambo, Demetri Arnaoutakis, Yan Liu, Myriam Loyo, Nishant Agrawal, Jason Howard, Ryan Li, Sun Ahn, Elana Fertig, David Sidransky, Jeffery Houghton, Kalyan Buddavarapu, Tiffany Sanford, Ashish Choudhary, Will Darden, Alex Adai, Gary Latham, Justin Bishop, Rajni Sharma, William H. Westra, Patrick Hennessey, Christine H. Chung, and Joseph A. Califano</td>
<td>These results of this study imply that therapies that target the NOTCH pathway may be more widely suitable for head and neck cancer treatment than appreciated currently.</td>
<td></td>
</tr>
<tr>
<td>1105</td>
<td>Identification of Alternative Splicing Events Regulated by the Oncogenic Factor SRSF1 in Lung Cancer</td>
<td>Fernando J. de Miguel, Ravi D. Sharma, Marí a J. Pajares, Luis M. Montuenga, Angel Rubio, and Ruben Pio</td>
<td>A novel genome-wide analytical tool was used in this study to define splicing events regulated by the oncogenic splicing factor SRSF1 in lung cancer, with implications for understanding how aberrant splicing drives cancer pathogenesis.</td>
<td></td>
</tr>
<tr>
<td>1116</td>
<td>CRR9/CLPTM1L Regulates Cell Survival Signaling and Is Required for Ras Transformation and Lung Tumorigenesis</td>
<td>Michael A. James, Haris G. Vikis, Everett Tate, Amy L. Rymaszewski, and Ming You</td>
<td>These findings establish a protumorigenic role for a transmembrane protein that is critical for Ras-driven lung cancers, with potential implications for therapy and chemosensitization.</td>
<td></td>
</tr>
<tr>
<td>1128</td>
<td>HuR Posttranscriptionally Regulates WEE1: Implications for the DNA Damage Response in Pancreatic Cancer Cells</td>
<td>Shruti Lal, Richard A. Burkhart, Neil Beeharry, Vikram Bhattacharjee, Eric R. Londin, Joseph A. Cozzitorto, Carmella Romeo, Masaya Jimbo, Zoe A. Norris, Charles J. Yeo, Janet A. Sawicki, Jordan M. Winter, Isidore Rigoutsos, Timothy J. Yen, and Jonathan R. Brody</td>
<td>This study shows how pancreatic cancer cells protect themselves against DNA damage, offering possible insights into the resistance of this cancer to therapy and how its response to DNA damaging agents used as clinical therapeutics might be improved.</td>
<td></td>
</tr>
<tr>
<td>1141</td>
<td>Cyclin E1 Deregulation Occurs Early in Secretory Cell Transformation to Promote Formation of Fallopian Tube–Derived High-Grade Serous Ovarian Cancers</td>
<td>Alison M. Karst, Paul M. Jones, Natalie Vena, Azra H. Ligon, Joyce F. Liu, Michelle S. Hirsch, Dariush Etemadmoghadam, David D.L. Bowtell, and Ronny Drapkin</td>
<td>These findings corroborate the hypothesis that dysregulation of a major S-phase cyclin drives transformation of fallopian tube secretory cells, which are now generally viewed as the main cell of origin for high-grade serous ovarian cancer.</td>
<td></td>
</tr>
</tbody>
</table>
The Niacin/Butyrate Receptor GPR109A Suppresses Mammary Tumorigenesis by Inhibiting Cell Survival
Précis: These results describe novel modes of action for niacin and butyrate in the mammary epithelium, where they activate a G protein–coupled receptor that suppresses tumorigenesis.

A Preclinical Model of CD38-Pretargeted Radioimmunotherapy for Plasma Cell Malignancies
Précis: This report offers a preclinical proof of concept for a novel radioimmunotherapy (PRIT) in a model of multiple myeloma, demonstrating rapid responses and achieving long-term survival.

Phosphorylation at Ser-181 of Oncogenic KRAS Is Required for Tumor Growth
Carles Barceló, Noelia Paco, Mireia Morell, Blanca Alvarez-Moya, Neus Bota-Rabassedas, Montserrat Jaumot, Felip Vilardell, Gabriel Capella, and Neus Agell
Précis: This important study presents one of the more important findings about KRAS structure and function in some years, with implications for a novel route to therapeutically attack KRAS-driven tumors.

Unbiased Compound Screening Identifies Unexpected Drug Sensitivities and Novel Treatment Options for Gastrointestinal Stromal Tumors
Sergei Boichuk, Derek J. Lee, Keith R. Mehalek, Kathleen R. Makielski, Agnieszka Wozniak, Danushka S. Seneviratne, Nina Korzeniewski, Ralf Buettner, Sumanta Pal, Hua Yu, Gerhard Müller-Newen, and Richard Jove
Précis: This work defines a mutated oncogene expressed in cancer stem-like cells in aggressive brain tumors, where it can be used to specifically target this cell population.

Curcumin Targets Breast Cancer Stem-like Cells with Microtentacles That Persist in Mammospheres and Promote Reattachment
Monica S. Charpentier, Rebecca A. Whipple, Michele I. Vitolo, Amanda E. Boggs, Jana Slovic, Keyata N. Thompson, Lekhana Bhandary, and Stuart S. Martin
Précis: A tubulin-based cell surface protrusion on cancer stem-like cells mediates cell–cell attachment phenomena that may promote metastasis.
Tumor Suppressor Alterations Cooperate to Drive Aggressive Mesotheliomas with Enriched Cancer Stem Cells via a p53–miR-34a–c-Met Axis
Craig W. Menges, Yuwaraj Kadariya, Deborah Altomare, Jacqueline Talarchek, Erin Neumann-Domer, Yue Wu, Guang-Hui Xiao, Irina M. Shapiro, Vihren N. Kolev, Jonathan A. Pachter, Andres J. Klein-Szanto, and Joseph R. Testa

Précis: A genetically engineered mouse model of asbestos-induced carcinogenesis rapidly develops mesothelioma characterized by an aggressive cancer stem-like cell population that drives invasion and metastasis, offering a useful preclinical system for study.

High Fidelity Patient-Derived Xenografts for Accelerating Prostate Cancer Discovery and Drug Development

Précis: A panel of transplantable patient-derived xenografts of prostate cancer that captures their natural biologic and molecular heterogeneity offers a next-generation model to define the most effective personalized therapies.

Correction: Lenalidomide Inhibits Lymphangiogenesis in Preclinical Models of Mantle Cell Lymphoma

ABOUT THE COVER
TF-011-MMAE (HuMax-TF-ADC), an antibody-drug conjugate composed of a tissue factor-specific antibody, a protease-cleavable linker, and the microtubule disrupting agent monomethyl auristatin E, is a novel antitumor agent with promise as a broad-acting therapeutic in many types of human cancer. The antitumor activity of TF-011-MMAE is dependent on binding to tissue factor-positive tumor cells, followed by highly efficient internalization and lysosomal targeting, which allows intracellular release of the auristatin and subsequent tumor cell killing. After three hours of incubation with tissue factor-expressing ovarian cancer cells, TF-011 (green), the antibody backbone of TF-011-MMAE, colocalized with the lysosomal marker LAMP-1 (red). Colocalization of TF-011 and LAMP-1 (yellow) demonstrates that, upon target binding, TF-011 is rapidly targeted to the lysosomal compartment. For details, see article by Breij and colleagues on page 1214.