PD-1 and Tim-3 Regulate the Expansion of Tumor Antigen–Specific CD8⁺ T Cells Induced by Melanoma Vaccines

Julien Fourcade¹, Zhaojun Sun¹, Ornella Pagliano¹, Joe-Marc Chauvin¹, Cindy Sander¹, Bratislav Janjic¹, Ahmad A. Tarhini¹, Hussein A. Tawbi¹, John M. Kirkwood¹, Stergios Moschos⁴, Hong Wang³, Philippe Guillaume⁷, Immanuel F. Luescher⁷, Arthur Krieg⁶, Ana C. Anderson⁶, Vijay K. Kuchroo⁶, and Hassane M. Zarour¹,²

Abstract
Although melanoma vaccines stimulate tumor antigen–specific CD8⁺ T cells, objective clinical responses are rarely observed. To investigate this discrepancy, we evaluated the character of vaccine-induced CD8⁺ T cells with regard to the inhibitory T-cell coreceptors PD-1 and Tim-3 in patients with metastatic melanoma who were administered tumor vaccines. The vaccines included incomplete Freund’s adjuvant, CpG oligodeoxynucleotide (CpG), and the HLA-A2–restricted analog peptide NY-ESO-1 157-165, either by itself or in combination with the pan-DR epitope NY-ESO-1 119-143. Both vaccines stimulated rapid tumor antigen–specific CD8⁺ T-cell responses detected ex vivo, however, tumor antigen–specific CD8⁺ T cells produced more IFN-γ and exhibited higher lytic function upon immunization with MHC class I and class II epitopes. Notably, the vast majority of vaccine-induced CD8⁺ T cells upregulated PD-1 and a minority also upregulated Tim-3. Levels of PD-1 and Tim-3 expression by vaccine-induced CD8⁺ T cells at the time of vaccine administration correlated inversely with their expansion in vivo. Dual blockade of PD-1 and Tim-3 enhanced the expansion and cytokine production of vaccine-induced CD8⁺ T cells in vitro. Collectively, our findings support the use of PD-1 and Tim-3 blockades with cancer vaccines to stimulate potent antitumor T-cell responses and increase the likelihood of clinical responses in patients with advanced melanoma. Cancer Res; 74(4); 1045–55. ©2013 AACR.

Introduction
Although peptide-based vaccines have failed to provide significant clinical benefits in patients with advanced melanoma, the dissection of vaccine-induced T-cell responses has provided the rationale for stepwise optimization of vaccine strategies (1). A major improvement of peptide vaccines with MHC class I epitopes and incomplete Freund’s adjuvant (IFA) in patients with cancer has been achieved by the addition of the TLR9 ligand CpG oligodeoxynucleotide (CpG) that stimulates strong tumor antigen–specific CD8⁺ T-cell responses (2–4). Although the vaccine-induced CD8⁺ T cells are often tumor reactive in vitro, they fail to promote tumor rejection in patients with advanced melanoma. A number of experimental studies have shown that CD4⁺ T-cell depletion in mice with chronic infections results in major CD8⁺ T-cell dysfunction and disease progression, suggesting that CD4⁺ T-cell help plays a critical role in maintaining CD8⁺ T-cell functions in the presence of high antigen load (5–7). To determine whether tumor antigen–specific CD4⁺ T cells augment tumor antigen–specific CD8⁺ T-cell numbers and function in patients with advanced melanoma, 2 clinical trials have compared immunizations with subcutaneous injections of MHC class I epitopes versus both MHC class I and class II epitopes, when emulsified in IFA (8, 9). Strikingly, IFN-γ–producing tumor antigen–specific CD8⁺ T cells were detected less frequently in patients immunized with both class I and class II epitopes. These vaccines have not, however, included potent adjuvants to activate APCs and prime strong vaccine-induced T cells that can be detected ex vivo. Therefore, the immunologic effect of CD4⁺ T cells in patients with advanced melanoma still needs to be thoroughly evaluated in the context of cancer vaccines with potent adjuvants. A number of studies have shown that the inhibitory receptors PD-1 and Tim-3 are upregulated by dysfunctional tumor antigen–specific CD8⁺ T cells in animals and patients with advanced melanoma (10–12). Targeting PD-1 and Tim-3 with blocking antibodies enhances the expansion and function of
tumor antigen–specific CD8+ T cells in vitro and in vivo, resulting in tumor rejection in experimental models. In animal models, PD-1 blockade synergizes with tumor vaccines to enhance tumor antigen–specific T-cell responses and induce delayed tumor growth or partial tumor regression (13–15). In addition, vaccines seem to induce the upregulation of PD-1 expression by vaccine-induced CD8+ T cells at tumor sites (14, 15). PD-1 blockade alone represents one of the most potent therapies of advanced melanoma, inducing durable complete and partial clinical responses in a significant number of patients with melanoma (16, 17). Whether PD-1 and Tim-3 are expressed by vaccine-induced tumor antigen–specific CD8+ T cells and whether they play a role in regulating the expansion and function of vaccine-induced CD8+ T cells in patients with advanced melanoma is still unknown.

In this study, we present the immunologic findings from a clinical trial of immunization with IFA, CpG, and the HLA-A2–restricted analog peptide NY-ESO-1 157-165V, either alone, or in combination with the pan-DR epitope NY-ESO-1 119-143, in patients with metastatic melanoma. We observed that the vast majority of vaccine-induced tumor antigen–specific CD8+ T cells detected ex vivo upregulated PD-1 and that a minority also upregulated Tim-3. The levels of PD-1 and Tim-3 expression by vaccine-induced CD8+ T cells at the time of vaccine administration inversely correlated with their expansion in vivo. In addition, we show that PD-1 and Tim-3 regulate the function and expansion of vaccine-induced CD8+ T cells in vitro.

Patients and Methods

Patients and study protocol

Twelve HLA-A2+ patients with NY-ESO-1+ stage III/IV melanoma (Supplementary Table S1) were included, after informed consent, in this phase I study approved by the University of Pittsburgh Institutional Review Board. Each vaccine was prepared as a stable emulsion composed of 2 mg CpG 7909/PF-3512676 (Pfizer Inc.), 400 μg analog peptide NY-ESO-1 157-165V alone [melanoma patient #1 (MP1) to MP5, in arm 1], or in combination with 400 μg peptide NY-ESO-1 119-143 (MP6–MP12, in arm 2), in Montanide ISA-720 (Seppic Inc.). The final immunization volume of 4 mL was administered as 4 separate subcutaneous injections. Patients received 8 biweekly immunizations before clinical and immunologic evaluation after 4 months of treatment. Nonprogressor patients received monthly immunizations until disease progression.

Ex vivo frequency and phenotype analysis of NY-ESO-1 157-165–specific CD8+ T cells

CD8+ T lymphocytes were purified from peripheral blood mononuclear cells (PBMC) of patients using MACS Column Technology (Miltenyi Biotec) and incubated with phycoerythrin (PE)- or APC-labeled HLA-A2/NY-ESO-1 157-165, or HLA-A2/HIVpol 476-484 tetramers (LJC, Lausanne). Next, cells were surface stained with the following antibodies: CD8-FITC or CD8-PerCP-Cy5.5, CD45RA-ECD or CD14-ECD, CD19-ECD, and CD56-biotin (Beckman Coulter) with streptavidin-ECD (Invitrogen), CD4-PE-Cy7 (Beckman Coulter) or PD-1-PE-Cy7 (BioLegend) or CD28-PerCP-Cy5.5 and CCR7-PE-Cy7 (BD PharMingen), Tim-3-PE (R&D Systems), and CD27-Alexa Fluor 750 (eBioscience). A violet amine reactive dye (Invitrogen) was used to assess cell viability. In some experiments, cells were intracellularly stained with Perforin-FITC (BD PharMingen), Granzyme A-Pacific Blue (BioLegend), and Granzyme B-APC (Invitrogen). The lower limit of detection (LLD) of these assays, calculated as the mean percentage of HIVpol 476-484 tetramer+ cells ± 1.645 × SD, was estimated to be 0.001% of CD8+ T cells.

Ex vivo intracellular cytokine and Foxp3 staining

Ex vivo cytokine production assays were performed as previously reported (18). Briefly, purified CD8+ or CD4+ T cells were incubated with an equal number of non-CD3 autologous cells pulsed with either HLA-A2–restricted peptides NY-ESO-1 157-165 or HIVpol 476-484, or pan-DR peptide NY-ESO-1 119-143 or peptide HIVpol 711-725 (10 μg/mL) before tetramer and/or cell surface staining, followed by intracellular cytokine staining using IFN-γ–FITC, IL-2–APC, IL-4–PE (Miltenyi Biotec), TNF–Alexa Fluor 700 or IL-21–PE (BD PharMingen) antibodies. A violet amine reactive dye (Invitrogen) was used to assess the viability of the cells. Foxp3 staining was performed using a Foxp3 Staining Kit (eBioscience). The LLD of cytokine-producing T cells, calculated as the mean percentage of cells stained positively with isotype control antibodies for cytokine antibodies + 1.645 × SD, was 0.001% of CD4+ or CD8+ T cells.

Ex vivo CD107a degranulation assays

Purified CD8+ T cells were incubated in the presence of non-CD3 autologous cells pulsed with peptides NY-ESO-1 157-165 or HIVpol 476-484 (10 μg/mL), CD107a-FITC antibodies (BD PharMingen), brefeldin A, and Monensin (Sigma-Aldrich), before tetramer and cell surface staining with CD8-PerCP-Cy5.5, CD14-ECD, CD19-ECD, CD56-biotin, CD4-PE-Cy7 (Beckman Coulter) antibodies, and streptavidin-ECD.

Experiments with PD-1 and Tim-3 blockade

The experiments with PD-1 and Tim-3 blockade were performed as previously described (18).

Statistics

T-cell responses to the vaccines were defined as greater than a 2-fold increase in the number of tetramer+ T cells or NY-ESO-1–specific cytokine producing T cells at any time point after starting immunization as compared with prevaccination and as greater than 2 times the LLD. The Wilcoxon signed rank test was used to assess the significance of T-cell responses. In Figs. 3 and 4, a 2-sided Student t test was used to compare the 2 arms. In Figs. 5C and 6A, a linear mixed model was used to determine relationships between studied variables. In PD-1 and Tim-3 blockade experiments, statistical hypotheses were tested with the Wilcoxon signed rank test for paired results from the same patient. Tests were 2-sided and considered significant at P < 0.05.
Results

Immunization with MHC class I or class I and class II peptides results in rapid and strong expansion of NY-ESO-1–specific CD8+ T cells

We first evaluated the ex vivo frequency of NY-ESO-1 157-165–specific CD8+ T cells (hereafter also called NY-ESO-1–specific CD8+ T cells) in PBMCs collected from patients with melanoma before the first immunization and at different time points during the course of vaccination. Immunization with MHC class I peptide (arm 1) or MHC class I and class II peptides (arm 2) resulted in increased frequencies of NY-ESO-1–specific CD8+ T cells that were detectable with HLA-A2/NY-ESO-1 157-165 (NY-ESO-1) tetramers ex vivo in all patients after 2 immunizations (4 weeks of treatment; Fig. 1A–C). In patients with no detectable NY-ESO-1–specific CD8+ T cells before therapy, the highest frequencies of vaccine-induced NY-ESO-1–specific CD8+ T cells ranged from 0.011% to 0.19% of total CD8+ T cells in arm 1, and from 0.022% to 0.82% in arm 2 (Fig. 1A and C). In two arm-1 patients (MP4 and MP5), and two arm-2 patients (MP11 and MP12),
with spontaneous NY-ESO-1–specific CD8+ T cells generated before the first vaccination, frequencies increased from 4.21% and 0.021% of total CD8+ T cells to 7.73% (1.8-fold increase) and 0.018% and 0.028% of total CD8+ T cells, respectively, in arm 1 and from 0.018% and 0.028% of total CD8+ T cells to 0.094% (5.2-fold increase) and 0.31% (11.1-fold increase), respectively, in arm 2 (Fig. 1B and C). Overall, we observed a significant increase in the frequencies of NY-ESO-1–specific CD8+ T cells (P = 0.0005).

Collectively, our findings show that peptide vaccines with CpG, IFA, and MHC class I epitope alone and in combination with MHC class II epitope stimulate tumor antigen–specific CD8+ T cells that are detectable ex vivo in patients with advanced melanoma.

Immunization with both MHC class I and class II peptides stimulates Th-1-type NY-ESO-1–specific CD4+ T cells

We next evaluated the frequencies of NY-ESO-1 119-143–specific CD4+ T cells (hereafter also called NY-ESO-1–specific CD4+ T cells) in PBMCs collected from patients with melanoma at different time points during the course of vaccination. To this end, we assessed the frequencies of IFN-γ–producing CD4+ T cells that were detectable after ex vivo stimulation with autologous non-CD3 cells pulsed with peptide NY-ESO-1 119-143. The 7 patients immunized with both MHC class I and class II peptides (arm 2) exhibited a rapid increase in the frequencies of IFN-γ–producing NY-ESO-1–specific CD4+ T cells that reached a peak after 8 to 12 weeks of vaccine therapy. In contrast, immunization with MHC class I peptide alone (arm 1) had no effect on NY-ESO-1–specific CD4+ T-cell expansion (Fig. 2A and B). Notably, we observed a significant increase in the frequencies of NY-ESO-1–specific CD4+ T cells in arm 2 patients (P = 0.0156), whereas no significant increase was noted in arm 1 patients (P = 0.2500). Vaccine-induced NY-ESO-1–specific CD4+ T cells displayed a Th-1 phenotype, producing IFN-γ, TNF, and IL-2, but no IL-4. They also produced IL-21 (Fig. 2C and Supplementary Fig. S1). We observed that the percentage of CD25intFoxp3+ cells among vaccine-induced IFN-γ–producing NY-ESO-1–specific CD4+ T cells was...
very low or undetectable (mean ± SD = 0.8% ± 1.1%), which is lower than that among total CD4+ T cells (3.8% ± 2.4%; Fig. 2D), suggesting that immunization with NY-ESO-1 119-143 MHC class II peptide, CpG, and IFA preferentially induced CD4+ T helper cells.

Altogether, our data show that immunization with CpG, IFA, and MHC class I and class II peptides stimulated Th-1 type NY-ESO-1-specific CD4+ T cells that were detectable ex vivo in patients with melanoma.

Immunization with both MHC class I and class II peptides increases IFN-γ production, cytolytic potential, and lytic capacities of tumor antigen–specific CD8+ T cells

We next assessed the capability of NY-ESO-1 157-165–specific CD8+ T cells, in PBMCs collected from patients with melanoma, to produce cytokines (IFN-γ, TNF, and IL-2), both before and after 3 (MP5 only) or 4 months (all other patients) of vaccination. Ex vivo frequencies of cytokine-producing NY-ESO-1–specific CD8+ T cells are presented in Fig. 3A and Supplementary Fig. S2A and Table S2. The increase in the percentages of IFN-γ–producing cells, among total vaccine-induced NY-ESO-1–specific CD8+ T cells, was significantly higher after vaccination in arm 2 (mean ± SD = 58.1% ± 22.2%) than in arm 1 (14.2% ± 29.3%). There was no significant difference for TNF and IL-2 production between the 2 treatment arms (Fig. 3B).

We next assessed the intracellular expression of the cytotoxic molecules granzyme A (GrzA), granzyme B (GrzB), and perforin (Perf) by NY-ESO-1–specific CD8+ T cells present in PBMCs of patients, before and after 4 months of vaccination (3 months for MP5). Ex vivo frequencies of

Figure 3. Immunization with MHC class I and class II peptides, CpG, and Montanide increases cytokine production by tumor antigen–specific CD8+ T cells. A, flow cytometry dot plots from total CD8+ T cells of three selected patients with melanoma (MP) in arm 1 (left) and arm 2 (right) showing the ex vivo percentages of IFN-γ+ and IFN-γ–NY-ESO-1 157-165–specific CD8+ T cells among total CD8+ T cells assessed after vaccination. B, after vaccination versus before vaccination differences in the percentages of IFN-γ–producing, TNF–producing, and IL-2–producing cells among total vaccine-induced NY-ESO-1–specific CD8+ T cells in patients immunized in arm 1 (n = 5) and arm 2 (n = 7). For patients with no NY-ESO-1–specific CD8+ T-cell response before vaccination, prevaccine percentages of cytokine-producing cells were considered to be 0. Horizontal bars, means. Open circles, arm 1 patients; gray circles, arm 2 patients. *P < 0.05 was considered significant. Data shown are from two or more independent measurements.
GrzA⁺, GrzB⁺, and Perf⁺ NY-ESO-1–specific CD8⁺ T cells are presented in Fig. 4A and Supplementary Fig. S2B and Table S3. The increase in the expression of cytotoxic markers among vaccine-induced NY-ESO-1–specific CD8⁺ T cells was significantly higher in patients immunized in arm 2 (mean ± SD = 67.4% ± 31.2%, 34.1% ± 28%, and 25.5% ± 11.8%, for GrzA⁺, GrzB⁺, and Perf⁺ cells, respectively) than in patients immunized in arm 1 (15.5% ± 17.9%, 3.9% ± 9.8%, and 2.3% ± 6.9%, respectively; Fig. 4B). We also observed that the increase in the percentages of degranulating/CD107a⁺ cells among vaccine-induced NY-ESO-1–specific CD8⁺ T cells was significantly higher after vaccination in arm 2 (mean ± SD = 42.2% ± 24.3%) than after vaccination in arm 1 (9.5% ± 15.7%), which shows that immunization with both MHC class I and class II peptides enhanced lytic activity of tumor antigen–specific CD8⁺ T cells (Fig. 4C and D and Supplementary Fig. S2C and Table S3).

The expansion of vaccine-induced tumor antigen–specific CD8⁺ T cells correlates with the upregulation of PD-1 and Tim-3 in vivo

We have previously reported that the inhibitory receptors PD-1 and Tim-3 play a critical role in regulating the expansion and functions of spontaneous NY-ESO-1–specific CD8⁺ T cells in vitro (12). We have also observed that PD-1 and Tim-3 upregulation by tumor antigen–specific CD8⁺ T cells correlates with the expression of activation markers and can be further increased upon TCR activation with cognate antigen in vivo (12, 18). To investigate whether immunization with peptides and CpG promotes the upregulation of inhibitory receptors, we next measured ex vivo expression of PD-1 and Tim-3 by vaccine-induced NY-ESO-1–specific CD8⁺ T cells at different time points during vaccine therapy (Fig. 5A and B). We observed that PD-1 expression was upregulated by a vast majority of NY-ESO-1–specific CD8⁺ T cells throughout the
course of immunization in all arm 1 and arm 2 patients (mean ± SD %PD-1+ cells = 73.3% ± 26%). In contrast, Tim-3 expression was increased by a minority only of cells in 10 of 12 patients (mean ± SD %Tim-3+ cells in all patients = 18.2% ± 16.3%). In all patients, a large majority of the Tim-3+ NY-ESO-1–specific CD8+ T cells coexpressed PD-1 (mean ± SD %PD-1+ cells within Tim-3+ cells = 84.4% ± 12.2%; data not shown).

We next wanted to investigate whether the expansion of NY-ESO-1–specific CD8+ T cells between immunizations correlated with changes in PD-1 and Tim-3 expression. We therefore calculated both the fold changes in vaccine-induced NY-ESO-1–specific CD8+ T-cell frequencies and the differences in PD-1 and Tim-3 expression levels ([differences in both percentage and mean fluorescence intensity (MFI) of PD-1 and Tim-3 expression by NY-ESO-1 tet+ CD8+ T cells] between 2 consecutive time points (corresponding to the 2 nearest and consecutive available blood draws over 1- or 2-month intervals) throughout the course of vaccination (up to 52 weeks) for each patient. We observed a positive correlation between the fold change in vaccine-induced NY-ESO-1–specific CD8+ T-cell frequencies and the upregulation of PD-1 and Tim-3 (Fig. 5C), suggesting that the greater the vaccine-induced CD8+ T-cell expansion following immunization, the greater the levels of PD-1 and Tim-3 expression.

The expansion of vaccine-induced tumor antigen–specific CD8+ T cells is regulated by PD-1 and Tim-3

We next investigated whether the expansion of vaccine-induced NY-ESO-1–specific CD8+ T cells between 2 consecutive time points (1- or 2-month intervals, up to 52 weeks of vaccination) correlates with the level of PD-1 and Tim-3 expression at the time of immunization. We observed a negative correlation between fold changes in vaccine-induced NY-ESO-1–specific CD8+ T-cell frequencies in vivo and the percentage of cells expressing PD-1, or the MFI of cells expressing Tim-3 at the time of immunization (Fig. 6A). We next evaluated the effects of PD-1 and Tim-3 pathway blockade on the expansion and function of vaccine-induced tumor antigen–specific CD8+ T cells in vitro. CFSE-labeled PBMCs isolated from 8 patients with melanoma after 4 months of vaccination (8 immunizations) were incubated for 6 days with NY-ESO-1 157-165 peptide in the presence of blocking monoclonal antibodies (mAbs) against PD-1 and/or Tim-3 or immunoglobulin G (IgG) control antibodies. The frequencies of proliferating (CFSEdil) and total NY-ESO-1 tet+ CD8+ T cells increased after incubation with anti-PD-1, anti-Tim-3, or both mAbs when compared with incubation with IgG control antibodies, resulting in 1.6-, 1.6-, and 2.4-fold changes in the frequencies of CFSEdil NY-ESO-1 157-165–specific CD8+ T cells, respectively, and in 1.2-, 1.3-, and 1.6-fold changes in the frequencies of total NY-ESO-1–specific CD8+ T cells, respectively (Fig. 6B and C and Supplementary Fig. S3), showing an additive effect of PD-1 and Tim-3 blockades on vaccine-induced tumor antigen–specific CD8+ T-cell expansion.

In addition, the frequencies of vaccine-induced NY-ESO-1–specific CD8+ T cells that produced cytokines increased after incubation in the presence of cognate peptide and anti-PD-1 mAbs, when compared with IgG control antibodies, resulting in 1.6-, 1.6-, and 1.8-fold changes in the frequencies of IFN-γ, TNF, and IL-2–producing NY-ESO-1–specific CD8+ T cells, respectively (Fig. 6D and E and Supplementary Fig. S4). The frequencies of cytokine-producing vaccine-induced NY-ESO-1–specific CD8+ T cells further increased in the presence of both anti-PD-1 and anti-Tim-3 mAbs (Fig. 6D and E and Supplementary Fig. S4).

Collectively, our findings show that the levels of PD-1 and Tim-3 expression by vaccine-induced tumor antigen–specific CD8+ T cells seem to be negatively correlated with the expansion of tumor antigen–specific CD8+ T cells in vivo following immunizations. They also show that PD-1 and Tim-3 blockades further augment the expansion and cytokine production of vaccine-induced tumor antigen–specific CD8+ T cells.

Side effects and clinical outcome

We observed no severe toxicity (Supplementary Table S4). None of the patients developed objective clinical responses. Among the 5 patients immunized in arm 1, 1 patient remained stable for 6 months, 3 patients progressed after 4 months, and 1 patient progressed after 3 months. Out of 7 patients immunized in arm 2, 2 patients progressed after 4 months whereas other patients remained stable for 6 months (2 patients), 7 months (1 patient), 22 months (1 patient), and 24 months (1 patient; Supplementary Table S4).

Discussion

In this study, we report the capability of peptide vaccines with MHC class I or both MHC class I and class II epitopes, in combination with CpG and IFA, to rapidly stimulate tumor antigen–specific CD8+ T cells, which are detected ex vivo, in patients with advanced melanoma. Notably, vaccine-induced tumor antigen–specific CD8+ T cells produced more IFN-γ and exhibited higher cytotoxic potential and lytic functions in patients immunized with both MHC class I and class II peptides when compared with MHC class I peptide alone, which supports a role for CD4 T-cell help in enhancing antitumor CTL responses in vivo. These findings are in agreement with a number of experimental studies of chronic viral infections in animal and humans. Loss of CD4 T-cell help correlates with severe CD8+ T-cell dysfunction and disease progression (5, 6, 19), whereas adoptive transfer of LCMV-specific CD4+ T cells into chronically infected mice enhances the function of exhausted CD8+ T cells (20). In addition, in vivo stimulation of HIV-specific CD4+ T cells augments the lymphoproliferative functions of HIV-specific CD8+ T cells in patients with chronic infection (21).

The capability of cancer vaccines with CD4 helper epitopes to stimulate potent tumor antigen–specific CD8+ T-cell responses in patients with advanced melanoma remains elusive. To the best of our knowledge, only 2 melanoma peptide vaccine trials have previously compared immunization with MHC class I versus both MHC class I
Fourcade et al.

A

Week 4 Week 8 Week 12 Week 16 Week 20 Week 24 Week 28

PD-1

Week 28

Tim-3

Weeks

B

%PD-1+/Tim-3+

NY-ESO-1 tet+ CD8+ T cells

%PD-1+/Tim-3+

NY-ESO-1 tet+ CD8+ T cells

C

Fold change

NY-ESO-1
tet+

Δ %PD-1+ NY-ESO-1—specific CD8+ T cells

Δ MFI PD-1 NY-ESO-1—specific CD8+ T cells

Δ %Tim-3+ NY-ESO-1—specific CD8+ T cells

Δ MFI Tim-3 NY-ESO-1—specific CD8+ T cells
Figure 6. The expansion of vaccine-induced tumor antigen–specific CD8\(^+\) T cells is regulated by PD-1 and Tim-3. A, correlation between the fold changes in NY-ESO-1 tet\(^+\) CD8\(^+\) T-cell frequencies assessed between two consecutive time points throughout the course of vaccination in both arms, and the level of PD-1 and Tim-3 expression (expressed as both percentage and MFI of expression) by NY-ESO-1–specific CD8\(^+\) T cells was assessed on the first day of each corresponding interval within each patient. \(P < 0.05\) was considered significant. B–E, PBMCs isolated from 8 patients with melanoma after 4 months of vaccination (8 immunizations) were incubated for 6 days \textit{in vitro} with peptide NY-ESO-1 157-165 in the presence of blocking mAbs against PD-1 and/or Tim-3 or IgG control antibodies. Frequencies and fold changes of proliferating/CFSE\(^\text{lo}\) or cytokine-producing NY-ESO-1–specific CD8\(^+\) T cells were assessed after a 6-day IVS with cognate peptide and blocking antibodies compared with IgG control antibodies. B and C, representative flow cytometric analysis from one patient with melanoma, showing percentages of vaccine-induced CFSE\(^\text{hi}\) NY-ESO-1 tet\(^+\) CD8\(^+\) T cells among total CD8\(^+\) T cells (B) and fold changes in the frequencies of vaccine-induced CFSE\(^\text{lo}\) and total NY-ESO-1 tet\(^+\) CD8\(^+\) T cells (\(n = 8\); C). D and E, representative flow cytometric analysis from one patient with melanoma, showing percentages of vaccine-induced IFN-\(\gamma\), TNF, and IL-2–producing NY-ESO-1 tet\(^+\) CD8\(^+\) T cells among total CD8\(^+\) T cells (D) and fold changes in the frequencies of vaccine-induced cytokine-producing NY-ESO-1 tet\(^+\) CD8\(^+\) T cells (\(n = 8\); E). \(P < 0.05\) was considered significant. Horizontal bars, means. Data shown are representative of two independent experiments.

Figure 5. \textit{Ex vivo} expression of PD-1 and Tim-3 by NY-ESO-1 157-165–specific CD8\(^+\) T cells following immunizations in arms 1 and 2. A and B, flow cytometry dot plots from one selected patient with melanoma in arm 2 (MP6; A) and summary data for all patients vaccinated in arm 1 (\(n = 5\)) and arm 2 (\(n = 7\); B) showing \textit{ex vivo} percentages of PD-1\(^+\) and Tim-3\(^+\) cells at different time points throughout the course of vaccination. Vertical lines, time points of vaccinations. C, correlation between the fold changes in NY-ESO-1 tet\(^+\) CD8\(^+\) T-cell frequencies and the differences in \textit{ex vivo} PD-1 and Tim-3 expression (differences in percentage and MFI of PD-1 and Tim-3 expression by NY-ESO-1 tet\(^+\) CD8\(^+\) T cells) throughout the course of vaccination. \(P < 0.05\) was considered significant. Data shown are from two independent experiments.
and class II epitopes. Phan and colleagues immunized patients with stage IV melanoma with HLA-A2-restricted peptides derived from gp100 and Melan-A/MART-1, either alone or in combination with one gp100 HLA-DR4 peptide, in IFA. They detected tumor antigen–specific CD8+ T-cell responses by IFN-γ ELISPOT after in vitro sensitization assays in 18 of 19 patients immunized with MHC class I peptides alone, and in 8 of 16 patients immunized with both MHC class I peptides and the HLA-DR4 peptide (8). In a large multicenter randomized trial, Slingluff and colleagues immunized patients with measurable stage IV melanoma with 12 MHC class I peptides, alone or in combination with either a T-helper tetanus peptide, or a mixture of MHC class II peptides, in IFA plus GM-CSF (9). Strikingly, the response rates, as determined by IFN-γ ELISPOT after in vitro sensitization, were lower in patients treated with both MHC class I and II peptides than in patients treated with MHC class I peptides, alone, or with MHC class I peptides in combination with tetanus peptide. These investigators also reported that immune responses to MHC class II epitopes were significantly associated with clinical responses and overall survival. Although, the reasons behind the poor immunogenicity of these 2 peptide vaccines with MHC class I and II peptides in IFA have not been fully investigated, a likely hypothesis is the stimulation of tumor antigen–specific Tregs in the absence of potent adjuvants. We and others have previously reported that tumor antigens can spontaneously induce low frequencies of tumor antigen–specific CD4+ Tregs in patients with advanced melanoma (22–24). It is therefore possible that peptide vaccines that do not include potent adjuvants expand tumor antigen–specific Tregs. In this study, however, we show that CpG-based vaccine does not expand CD25hiFoxp3+ NY-ESO-1–specific CD4+ Tregs.

One critical finding is the upregulation of the inhibitory receptors PD-1 and Tim-3 by vaccine-induced CD8+ T cells. We show that the majority of vaccine-induced CD8+ T cells upregulate PD-1 whereas a minority also upregulate Tim-3. PD-1 and Tim-3 upregulation correlates with the expansion of vaccine-induced CD8+ T cells following immunizations. Therefore, the inhibitory receptors PD-1 and Tim-3, which are coexpressed by tumor-induced exhausted CD8+ T cells present in patients with advanced cancer (12), are also upregulated by freshly activated tumor antigen–specific CD8+ T cells primed by cancer vaccines. The upregulation of PD-1 by vaccine-induced CD8+ T cells occurred in patients immunized with MHC class I peptide, either alone or in combination with MHC class II peptide. This suggests that although vaccine-induced tumor antigen–specific CD4+ T cells improve the functionality of vaccine-induced tumor antigen–specific CD8+ T cells, they do not impede the upregulation of PD-1 and Tim-3 by these cells. Interestingly, the longitudinal evaluation of vaccine-induced CD8+ T cells throughout the course of immunizations showed that the levels of PD-1 and Tim-3 expression by vaccine-induced tumor antigen–specific CD8+ T cells at the time of immunization inversely correlate with their expansion, suggesting that PD-1 and Tim-3 play a critical role in regulating the expansion of vaccine-induced CD8+ T cells in vivo. In support of this observation, we further show that PD-1 and Tim-3 blockades enhanced the expansion of vaccine-induced tumor antigen–specific CD8+ T cells in vitro. In addition, although vaccination with both MHC class I and class II peptides increased IFN-γ production by vaccine-induced CD8+ T cells, PD-1 and Tim-3 blockades further augmented the frequency of IFN-γ, TNF, and IL-2–producing CD8+ T cells, enhancing their overall functionality.

In summary, our data demonstrate that peptide vaccines with CpG, IFA, and MHC class I and class II peptides stimulate tumor antigen–specific CTLs with enhanced IFN-γ production, cytotoxic potential, and lytic capacities that upregulate PD-1 and Tim-3. They also show that PD-1 and Tim-3 regulate the expansion of vaccine-induced CD8+ T cells throughout the course of immunization and that PD-1 and Tim-3 blockades further enhance the expansion and function of vaccine-induced CD8+ T cells. Altogether, these findings strongly support the use of PD-1 and Tim-3 blockades, in combination with peptide vaccines and potent adjuvant, for robust expansion of vaccine-induced tumor antigen–specific CTLs, and increased likelihood of clinical benefits for patients with advanced melanoma. Such a therapeutic strategy could prove useful to the patients with melanoma who do not respond to anti-PD-1 antibody therapy alone, possibly because of the lack of spontaneous tumor antigen–specific CD8+ T cells at tumor sites and PD-L1 expression by melanoma cells upon IFN-γ production by T cells (16, 25). Such patients may be more likely to respond favorably to the combination of PD-1 and Tim-3 blockades with cancer vaccines.

Disclosure of Potential Conflicts of Interest
A. Krieg is employed as a CSO in Pfizer. A. Krieg also has ownership interest (including patents) in Pfizer. A.C. Anderson is a consultant/advisory board member of CoStim Pharmaceuticals. V.K. Kuchroo has an expert testimony from CoStim Pharmaceuticals. No potential conflicts of interest were disclosed by the other authors.

Authors' Contributions
Conception and design: J. Fourcade, A. Tawbi, J.M. Kirkwood, S. Moschos, H.M. Zarour
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J. Fourcade, A.A. Tarhini, H.A. Tawbi, J.M. Kirkwood, S. Moschos, P. Guillaume, H.M. Zarour
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): J. Fourcade, R. Janje, A.A. Tarhini, J.M. Kirkwood, H. Wang, H.M. Zarour
Writing, review, and/or revision of the manuscript: J. Fourcade, Z. Sun, J.-M. Chauvin, C. Sander, A.A. Tarhini, H.A. Tawbi, J.M. Kirkwood, S. Moschos, H. Wang, V.K. Kuchroo, H.M. Zarour
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): J. Fourcade, O. Pagliano, A.A. Tarhini, V.K. Kuchroo, H.M. Zarour
Study supervision: J.M. Kirkwood, H.M. Zarour

Acknowledgments
The authors thank Dr. L. Borghesi and D. Falkner of the Flow Facility of the University of Pittsburgh, Department of Immunology, for their technical support, and S. Robinson for editorial assistance.
Grant Support

This work was supported by grants NIH/NCI R01CA90360, R01CA112198, and R01CA157467 (H.M. Zarour), U11 EB021451 and U11TR000005 (CTSI), RO1 NS085937 and P01 AI07378 9 (V.K. Kuchroo), and ACS RSG-11-057-01-LIB (A.C. Anderson).

References

PD-1 and Tim-3 Regulate the Expansion of Tumor Antigen–Specific CD8+ T Cells Induced by Melanoma Vaccines

Julien Fourcade, Zhaojun Sun, Ornella Pagliano, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-13-2908

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2013/12/16/0008-5472.CAN-13-2908.DC1

Cited articles
This article cites 25 articles, 15 of which you can access for free at:
http://cancerres.aacrjournals.org/content/74/4/1045.full#ref-list-1

Citing articles
This article has been cited by 7 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/74/4/1045.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.