Axon Guidance Factor SLIT2 Inhibits Neural Invasion and Metastasis in Pancreatic Cancer

Andreas Göhrig,1,2 Katharina M. Detjen,1,2 Georg Hilfenhaus,2 Jan L. Kömer,2 Martina Welzel,1,2 Ruza Arsenic,4 Rosa Schmuck,3 Marcus Bahra,3 Jane Y. Wu,5 Bertram Wiedenmann,2, and Christian Fischer1,2

Abstract

Pancreatic ductal adenocarcinoma (PDAC) metastasizes by neural, vascular, and local invasion routes, which limit patient survival. In nerves and vessels, SLIT2 and its ROBO receptors constitute repellent guidance cues that also direct epithelial branching. Thus, the SLIT2–ROBO system may represent a key pinch point to regulate PDAC spread. In this study, we examined the hypothesis that escaping from repellent SLIT2–ROBO signaling is essential to enable PDAC cells to appropriate their local stromal infrastructure for dissemination. Through immunohistochemical analysis, we detected SLIT2 receptors ROBO1 and ROBO4 on epithelia, nerves, and vessels in healthy pancreas and PDAC specimens, respectively. SLIT2 mRNA expression was reduced in PDAC compared with nontransformed pancreatic tissues and cell lines, suggesting a reduction in SLIT2–ROBO pathway activity in PDAC. In support of this interpretation, restoring the SLIT2 expression in SLIT2-deficient PDAC cells inhibited their bidirectional chemotraction with neural cells, and more specifically, impaired unidirectional PDAC cell navigation along outgrowing neurites in models of neural invasion. Restoring autocrine/paracrine SLIT2 signaling was also sufficient to inhibit the directed motility of PDAC cells, but not their random movement. Conversely, RNA interference–mediated silencing of ROBO1 stimulated the motility of SLIT2-competent PDAC cells. Furthermore, culture supernatants from SLIT2-competent PDAC cells impaired migration of endothelial cells (human umbilical vein endothelial cells), whereas an N-terminal SLIT2 cleavage fragment stimulated such migration. In vivo investigations of pancreatic tumors with restored SLIT2 expression demonstrated reduced invasion, metastasis, and vascularization, with opposing effects produced by ROBO1 silencing in tumor cells or sequestration of endogenous SLIT2. Analysis of clinical specimens of PDAC showed that those with low SLIT2 mRNA expression exhibited a higher incidence and a higher fraction of tumor-infiltrated lymph nodes. Taken together, our findings argue that disrupting SLIT2–ROBO signaling in PDAC may enhance metastasis and predispose PDAC cells to neural invasion. Cancer Res; 74(5); 1529–40. ©2014 AACR.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths in the Western world with a 5-year survival rate of <5% (reviewed in ref. 1). Because of early invasive growth and metastatic spread, the vast majority of patients are diagnosed with advanced, unresectable disease, facing a median survival of 4 to 6 months under palliative chemotherapy (1). Even after curative resection, median survival is as low as 12 to 20 months, as most patients eventually experience disease recurrence (1).

Neural invasion represents a key pathologic feature of PDAC, and a distinct and independent route of tumor cell spread (reviewed in ref. 2). Neural invasion is considered a major risk factor of tumor recurrence and a major cause of neuropathic pain and, hence, limits both the success of curative surgery and the quality of life of patients with PDAC. Neural invasion is currently perceived as a process driven by mutual attraction and reciprocal interaction between tumor cells and nerves, resulting in both, axonal growth and tumor cell invasion (2–4). Thus, neural hypertrophy and increased nerve densities are frequent pathologic features of PDAC, indicating that tumor cells affect neural morphology and plasticity (5). Several signaling molecules from neural and/or tumor cells, have been implicated in neural invasion, including soluble ligands such as neurotrophins, cytokines, and chemokines, as well as cell surface–bound ligands and their respective receptors (2).

Axon guidance factors and their receptors constitute a signaling system with features that uniquely qualify them as
regulators of neural invasion. Physiologically, axon guidance factors function as molecular cues to control growth, navigation, and positioning of neurons in the developing brain (6). Furthermore, blood vessels, which arose later in evolution than nerves, co-opted several of the molecular mechanisms that originally served the nervous system (7). Thus, well-established regulators of angiogenesis, such as VEGF, originated as regulators of neurogenesis; conversely, axon guidance factors act on endothelial cells to control angiogenesis (7). Axon guidance molecules, therefore, represent attractive candidate regulators of both networks that provide the infrastructure for PDAC metastatic spread, i.e., vascular routes and neural invasion.

SLITs and their ROBO receptors are such guidance factors that navigate nerves and vessels (7–9). By now, three mammalian SLIT homologues (SLIT1–3) have been characterized. The activity of secreted SLIT ligands is mediated through interaction with Robos, which are single-pass transmembrane receptors belonging to the immunoglobulin superfamily of cell adhesion molecules (8–10). Originally characterized as repulsive axon guidance cues in midline crossing of commissural axons during neural development (11, 12), subsequent genetic studies confirmed SLITs and ROBOs as chemorepellent cues controlling axon guidance and branching (13), migration of neurons and glia (14, 15), and navigation of neural crest cells during neurogenesis (16, 17). However, SLITs and ROBOs also function in developmental processes outside the nervous system (9, 10). Thus, the discovery of the endothelial specific receptor ROBO4 suggested a key role of the SLIT–ROBO system in angiogenesis (18, 19), and indeed revealed that SLIT2 also regulates angiogenic sprouting and vascular homeostasis (reviewed in refs. 9, 10). In addition, chemorepellent SLIT2 signaling has been implicated in the control of stereotypic and polarized branching morphogenesis during development of epithelial organs such as kidney, mammary gland, and lungs (20–22). The tightly regulated pathways that control morphogenesis are frequently corrupted in epithelial malignancies (9, 10), and SLIT2 has indeed been implicated in a number of human tumors. Initial seminal studies reported overexpression of SLIT2 in human tumor samples and functionally linked SLIT2 with enhanced tumor growth and vascularization (23). However, loss of SLIT2 expression by epigenetic inactivation was reported in tumors such as breast, colon, and lung cancer (24, 25), and low SLIT2 mRNA expression was associated with distant metastasis and poor survival (9, 10). Loss of SLIT2 was, furthermore, linked to aberrant growth and migration of tumor epithelial cells, thereby promoting tumor growth and metastatic spread in experimental settings (9, 10). To date, neither expression nor function of the SLIT2–ROBO system in PDAC has been studied in detail. Therefore, we addressed the function of SLIT2–ROBO guidance cues for growth, metastasis, angiogenesis, and neural invasion of PDAC.

Material and Methods

Antibodies were from Sigma-Aldrich (Flag), Invitrogen (Myc), Millipore (SLIT2 and cortactin), Bethyl (ROBO1), Abcam (ROBO4), and BD Pharmingen (CD31). Human SLIT2N was from Sigma-Aldrich and PeproTech, and ROBO1-Fc from R&D Systems.

Cell culture

MiaPaCa, ASPC1, and Panc1 cells were from the American Type Culture Collection (ATCC); Capan-1, Capan-2, and DANG cells were from Leibniz Institute DSMZ and maintained as described in ref. 26. The immortal HPDE cell line H6c7 was from the University Health Network (27, 28).

Pancreatic cancer specimens

Tissue samples were from patients with PDAC undergoing surgery at Charité-Universitätsmedizin from 1996 to 2013. Patients gave written informed consent. Data on tumor–node–metastasis (TNM) classification and tumor infiltration of lymph nodes were retrieved from pathology reports.

Quantitative RT-PCR

RNA was purified using the RNeasy Mini Kit (Qiagen), and quantified on Agilent’s 2100 Bioanalyzer using the RNA 6000 Nano Kit (Agilent). Quantitative real-time PCR (qRT-PCR) was conducted in triplicate using SLIT2 TaqMan primer/probes (Hs00191193_m1; Applied Biosystems) with the One-Step RT-PCR Kit (Invitrogen) on a CFX96 Touch Real-Time PCR Detection System thermal cycler (Bio-Rad). RNA isolation and qRT-PCR of cultured cells were performed as described in ref. 29. Relative quantification was calculated by the Livak method.

Generation of cell clones

Full-length SLIT2-cDNA (Hs.29802; imaGenes) was flanked by a N-terminal 3xFlag-tag and subcloned into pCDNA4/TO-3xFlag-mycHis (T-REx; Invitrogen), resulting in pCDNA4/TO-SP-3xFlag-SLIT2-mycHis. Following sequential transfection of pCDNA6/TR (cells described in ref. 30) and pCDNA4/TO-SP-3xFlag-SLIT2-mycHis, SLIT2 expression was induced by 1 μg/mL doxycycline (Sigma-Aldrich). Cells expressing pCDNA6/TR were used to exclude off-target effects of doxycycline. MISON Lentinival Transduction Particles (Sigma-Aldrich) for shRNA-mediated ROBO1-knockdown and nontarget control particles were used at a multiplicity of infection (MOI) of 10 and clones were selected with 0.6 μg/mL puromycin.

Preparation of cell extracts and immunoblotting

The 5 × 10^6 cells were treated with doxycycline for 48 hours, lysed in 100 μL RIPA buffer and immunoblotted as described in ref. 26. Trichloroacetic acid precipitates from culture supernatants were prepared as described in ref. 26.

Migration and invasion assays

For migration assays, 2 × 10^4 cells per insert (doxycycline-pretreated, if applicable) were placed in serum-free medium in 8 μm Transwell inserts (Corning) and allowed to migrate toward chemotactic gradients for the times indicated. Migrated cells were stained with crystal violet or 4',6-diamidino-2-phenylindole (DAPI) and quantified by counting five standardized fields at ×100 magnification (29, 31). Please refer to Supplementary Materials and Methods for details. For 3D Matrigel Invasion assays, 8 μm Transwells were coated with...
1 mg/mL growth factor–reduced Matrigel (BD Pharmingen). Experiments were performed in triplicates.

Lamellodrapia formation of endothelial cells

Serum-starved human umbilical vein endothelial cells (HUVEC; Lonza) were grown on collagen-coated cover slides. Following treatments, cells were fixed with 70% ethanol and stained with phalloidin and fluorescein isothiocyanate (FITC)–conjugated α-tubulin. Lamellodrapia were quantified using AxiolinoVision (Zeiss) and ImageJ software (NIH).

Tumor models

Local authorities approved the animal experiments. Female severe combined immunodeficient (SCID) beige mice (20–24) were from Charles River Laboratories. For orthotopic tumors, 10⁶ cells were injected into the pancreatic head (26, 29). After 7 (MiaPaCa) or 3 (DANG) weeks, mice were sacrificed, primary tumors harvested, and enlarged lymph nodes were collected. Metastatic nodules in the mesentery were counted as described in ref. 29.

Immunohistochemical analyses

Immunohistochemistry was conducted on cryostat sections as described and the average number of CD31-positive vessels was determined from digital images of three regions of maximal vascular density (MiaPaCa) or by counting of all vessels per field (DANG) at ×100 magnification (26).

Dorsal root ganglia–tumor cell coculture assay

Dorsal root ganglia (DRG) and tumor cells were placed in separate growth factor–reduced Matrigel drops at 1 mm distance in 12-well plates, and connected with a Matrigel bridge. Time-lapse imaging (Leica DMi6000 B) conducted between 9 and 15 days of culture was evaluated using automated acquisition software (Leica LAS AF6000). Images of individual tumor cells were taken every 30 minutes to follow locomotion. Travel distances, velocity, and directness were calculated using ImageJ and ibidi Chemotaxis software (refer to Supplementary Materials and Methods for further details).

Statistical analysis

Statistical significance was determined by the t test, Fisher exact test, and Mann–Whitney test using GraphPad Prism. Data represent means ± SEM unless stated otherwise.

Results

SLIT2 mRNA expression is reduced in human PDAC and correlates with lymphatic metastasis

Initial experiments assessed the expression of the SLIT2 receptors ROBO1 and ROBO4 in pancreatic tissues. Immunohistochemistry localized ROBO1 to ductal epithelial cells and ROBO4 to the vasculature of both the nontransformed pancreas and PDAC (Fig. 1A–F). Moreover, ROBO1 immunoreactivity was localized on pancreatic nerves (Fig. 1C), as confirmed by serial sections stained with the neuronal marker S100 (Supplementary Fig. S1A–S1C).

Next, we determined SLIT2 expression in PDAC cell lines and human tissue samples. SLIT2 mRNA was low or absent in all PDAC cell lines examined except the well-differentiated cell line DANG, which exhibited levels comparable with the immortalized pancreatic epithelial cell line HPDE (Fig. 1G). 5-aza-dC treatment reactivated SLIT2 expression in Panc1 cells (Supplementary Fig. S1D), suggesting epigenetic silencing as one potential mechanism of SLIT2 inactivation. Moreover, qRT-PCR indicated a reduction of SLIT2 mRNA expression in PDAC when compared with nontransformed pancreas in clinical specimens, both in the overall cohort (Fig. 1H) and the subgroup of paired tumor and nontransformed tissues (Supplementary Fig. S1F). On the basis of the best separation indicated in receiver-operator characteristic curves, we identified tumors with pathologic SLIT2 mRNA expression (Fig. 1I). In these tumors, SLIT2 mRNA expression < median correlated with higher incidence (Fig. 1J) and a higher extent of lymph node metastasis (Fig. 1K). Conversely, N1 tumors exhibited lower SLIT2 mRNA than N0 tumors. Thus, the SLIT2–ROBO signaling pathway is present in the pancreas, and SLIT2 expression is reduced in patients with PDAC with nodal metastasis.

SLIT2 inhibits directed migration and invasion of PDAC cells in vitro

To experimentally address the function of SLIT2 in PDAC, we decided on tetracycline-inducible reexpression of SLIT2 in MiaPaCa and Panc1 cells, which lack endogenous SLIT2 (Fig. 1G). Doxycycline-induced production and secretion of myc- and Flag-tagged full-length SLIT2, and of the bioactive, ROBO-binding N-terminal cleavage fragment SLIT2N (32) in MiaPaCa and Panc1 cells, were confirmed by immunoblotting (Fig. 2A and Supplementary Fig. S2A). Thus, transfected PDAC cells produced and processed SLIT2.

As ROBO1 is present on MiaPaCa and Panc1 cells (Supplementary Fig. S1E), we initially determined auto/paracrine SLIT2 effects in vitro. SLIT2 reexpression did not affect proliferation of PDAC cells (Fig. 2B and Supplementary Fig. S2B), nor did it affect random migration (Fig. 2C and Supplementary Fig. S3) and wound healing of MiaPaCa (Fig. 2D). However, SLIT2 induction markedly inhibited directed migration and invasion of MiaPaCa (Fig. 2E and F) and Panc1 (Fig. 2E–F) cells (Supplementary Fig. S2C and S2D). SLIT2 effects on migration were prevented by cotreatment with the soluble ROBO1-decoy receptor ROBON (Fig. 2G). Migration of MiaPaCa and Panc1 clones with stable overexpression of SLIT2 was similarly inhibited by 72.7% (n = 3; P = 0.002) and 57.7% (n = 3; P = 0.043), respectively, indicating that SLIT2 effects did not depend on the mode of ectopic expression. Furthermore, SLIT2-conditioned medium from MiaPaCa clones impaired migration of ROBO1–competent wild-type MiaPaCa, but not of ROBO1-deficient ASPC1 cells (Fig. 2H and I). Use of a purified N-terminal fragment of SLIT2 also reproduced the effects of SLIT2-conditioned tumor cell media (Supplementary Fig. S2E and S2F), and coincubation with a soluble Fc-coupled ROBO1 receptor (ROBO1-Fc) prevented the inhibition of migration (Fig. 2H and Supplementary Fig. S2E). Finally, migration of DANG cells with endogenous SLIT2 expression was enhanced by knockdown of ROBO1 (Fig. 2J and K). Overall, these data are consistent with a ROBO1-mediated, auto/paracrine action of SLIT2 as a suppressor of PDAC cell motility.
SLIT2 exhibits variable effects on endothelial cell migration in vitro

Because we detected ROBO receptors in PDAC vasculature, we addressed angioregulatory activities of tumor cell-derived SLIT2 in vitro. Use of purified recombinant SLIT2N increased (Fig. 3A), whereas SLIT2-conditioned media from stable MiaPaCa-SLIT2 clones reduced HUVEC migration (Fig. 3B). Blocking SLIT2 in the MiaPaCa-SLIT2-conditioned media by ROBO1-Fc counteracted this effect, suggesting a direct inhibitory action of tumor cell–derived SLIT2 (Fig. 3B). Tumor cell–derived SLIT2, furthermore, impaired VEGF-induced lamellipodia formation of HUVEC by preventing F-actin polymerization and spatial redistribution of cortactin (Fig. 3C–E). Thus, variable direct effects on endothelial motility were observed with purified truncated SLIT2N and PDAC-derived and -processed full-length SLIT2, with the latter exhibiting inhibitory effects.

Figure 1. SLIT2 mRNA expression is reduced in human PDAC and inversely correlates with lymph node metastasis. A–F, immunohistochemistries for ROBO1 (A–C) and ROBO4 (D–F) in nontransformed pancreas, PDAC, and intrapancreatic nerves. Arrows, ROBO1 in ductal epithelial cells; arrowheads, ROBO4 in the vasculature; filled arrowheads, pancreatic nerves. Bar, 100 μm. G, SLIT2 mRNA expression in PDAC cell lines using qRT-PCR, normalized to 18S-RNA. H, SLIT2 mRNA expression in PDAC (n = 28) and nontransformed pancreas (n = 29) was determined using qRT-PCR and normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Shown is the scatter dot plot with median and interquartile range (H; P < 0.0001, Mann–Whitney test). I, receiver-operator characteristic analysis for determination of a cutoff level, which best discriminates PDAC from nontransformed pancreas (cutoff < 0.458, likelihood ratio: 18.64). Further analysis was restricted to tumors exhibiting pathologic SLIT2 mRNA levels (n = 18). J–K, incidence of nodal metastasis (J; *P = 0.009, Fisher exact test) and percentage of tumor-infiltrated lymph nodes (K; *P = 0.005, Mann–Whitney test) in patients with low (<median, n = 9) or high (>median, n = 9) tumoral SLIT2 mRNA levels. L, tumoral SLIT2 mRNA levels in patients without (N0) and with nodal metastasis (N1); *P = 0.0043, Mann–Whitney test. Shown is the scatter dot plot with median and the interquartile range.
SLIT2 and ROBO1 inhibit invasion, metastasis, and angiogenesis of PDAC xenografts in vivo

To address SLIT2 effects on PDAC growth and progression in vivo, MiaPaCaTR-SLIT2 cells were grown as orthotopic xenografts. SLIT2 induction (confirmed in tumor lysates; Supplementary Fig. S4) moderately decreased primary tumor growth (Fig. 4A–C), but substantially reduced abdominal metastasis (Fig. 4D–F) and nodal spread (Fig. 4L), even when size-matched tumors were compared (Supplementary Fig. S5A–S5D). SLIT2 also diminished invasive growth into adjacent organs (Fig. 4J and K). Furthermore, microvessel densities were reduced in MiaPaCaTR-SLIT2 tumors with SLIT2 induction in the overall group (Fig. 4G–I) and in a subgroup analysis of size-matched tumors (Supplementary Fig. SSE and SSF), supporting an antiangiogenic action of SLIT2 in vivo.

As high-level SLIT2 production in our overexpression model might not accurately reflect the biologic role of endogenous SLIT2, we pursued a complementary experimental approach and used DANGROBO1-KD cells to study the in vivo consequences of disrupted SLIT2/ROBO1 signaling in PDAC. DANGROBO1-KD tumors exhibited enhanced local invasion and a marked increase in the incidence and extent of metastasis compared with controls, although primary tumor growth was not significantly augmented (Fig. 5A–E and Supplementary Fig. S6A–F).
ROBO1-Fc. As in the orthotopic setting, DANGscr and allowed us to sequester and inactivate SLIT2 by coinjection of we used subcutaneous DANG xenografts, as this approach S6E and S6F). To interrogate the role of SLIT2 for angiogenesis, SLIT2 levels in this approach (Fig. 5F and Supplementary Fig. S6D). Similarly, tumor vascularization was not different between experimental groups—consistent with unaltered SLIT2 levels in this approach (Fig. 5F and Supplementary Fig. S6E and S6F). To interrogate the role of SLIT2 for angiogenesis, we used subcutaneous DANG xenografts, as this approach allowed us to sequester and inactivate SLIT2 by coinjection of ROBO1-Fc. As in the orthotopic setting, DANG
S6E and DANG
S6F

SLIT2-conditioned medium (B; n = 4; * P = 0.021). C–E, cortactin (green) and phalloidin (red) immunofluorescence illustrated VEGF-induced (50 ng/mL; 1 hour) formation of lamellipodia (C; arrowheads), which was abrogated by SLIT2-conditioned medium (D). Lamellipodia were quantified as percentage of total HUVEC perimeter. A total of n = 95–120 individual endothelial cells out of three independent experiments were analyzed (E; P < 0.0001, ANOVA). Scale bar, 10 μm.

SLIT2 inhibits invasion and metastasis of syngeneic Panc02 pancreatic cancer in vivo

To corroborate the antitumor action of SLIT2 in an immunocompetent model, syngeneic orthotopic Panc02 tumors were evaluated. Primary tumor growth was comparable in mice bearing Panc02
SLIT2

tumors with ectopic SLIT2 expression as compared with mock controls (Supplementary Fig. S8A–S8C). However, invasive growth into adjacent organs as well as abundance of abdominal metastasis and malignant ascites were markedly diminished in mice bearing SLIT2-producing Panc02
SLIT2

tumors (Supplementary Fig. S8D–S8H). Thus, antitumorigenic and antimetastatic properties of SLIT2 were not confined to immunocompromised xenografts.

SLIT2 inhibits bidirectional chemotraction of PDAC and neuronal cells

Given that ROBO1 expression was observed in pancreatic nerves, we addressed SLIT2 effects on the mutual interaction of PDAC cells with neuronal cells. Because xenograft tumors are poorly innervated, we combined in vitro and ex vivo approaches with increasing complexity. First, directed migration of MiaPaCa
TR
SLIT2

tumors toward chemotactic stimuli from Schwann-cell cultures was diminished by SLIT2 (Fig. 6A and Supplementary Fig. S2G). Vice versa, directed migration of Schwann-cells was reduced, when SLIT2-expressing MiaPaCa
TR
SLIT2

tumors were grown in the lower chamber (Fig. 6B). Thus, SLIT2 counteracted bidirectional chemotraction between neuronal and PDAC cells.

SLIT2 impairs unidirectional migration of PDAC cells along nerves

To obtain a representation of tumor cell migration along neurites, coculture assays of DRG and PDAC cell colonies were established (Fig. 6C). Time-lapse microscopy captured the dynamic process by which neurites grew out from DRGs and projected into cancer cell colonies; reciprocally, tumor cells dissociated from the colony, unidirectionally migrated along the neurites, once contact was established, and ultimately formed tumor cell protrusions toward the ganglia of origin (Fig. 6D–F; Supplementary Video S1 and S2). GFP-labeled MiaPaCa cells confirmed that these were tumor cell projections (Supplementary Fig. S9). Under vehicle-control conditions, this neural invasion consistently occurred and increased over time (Fig. 6G). Induction of SLIT2, however, diminished the extent of neural invasion of MiaPaCa
TR
SLIT2

tumors (Fig. 6G).

Furthermore, evaluation of individually tracked MiaPaCa
TR
SLIT2

tumors revealed that tumor cells with nerve contact traveled greater distances with increased directness, and reached higher velocities, as compared with cells without nerve contact, which exhibited random, nondirectional movements (Fig. 7). Notably, induction of SLIT2 in MiaPaCa
TR
SLIT2

tumors with nerve contact impaired their capacity to migrate along neurites by reducing their travel speed and distance, and directionality (Fig. 7I–L). In contrast, SLIT2 did not change these parameters in tumor cells lacking nerve contact.
(Fig. 7I–L), suggesting that SLIT2 specifically regulated PDAC cell motility in close vicinity with nerves. Overall, these data indicate that SLIT2 inhibits directed navigation of PDAC cells along contacted neurites.

Discussion

Understanding the molecular basis of the almost inevitable, therapy-refractory progression of PDAC constitutes a central task for translational research. A recent sequencing effort in PDAC revealed an unexpected cluster of alterations in genes of the axon guidance factor family (33). More specifically, genomic mutations in the SLIT2 and ROBO1/2 pathway were prevalent, and reduced expression of components of this pathway correlated to shorter survival in PDAC (33). Our current data confirm reduced SLIT2 mRNA expression in PDAC tissues, and delineate the function of SLIT2–ROBO signaling for several clinically relevant aspects of PDAC biology. Main findings in PDAC cells with experimental reexpression of SLIT2 are a reduced capacity to metastasize and to induce neovascularization. Conversely, enhanced invasion, metastasis, and vascularization characterize PDAC xenografts.

Figure 4. Inducible reexpression of SLIT2 inhibits invasion, metastasis, and angiogenesis of orthotopic pancreatic tumors. A–F, MiaPaCaTR-SLIT2 cells were grown as orthotopic tumors in mice treated with vehicle (n = 13) or doxycycline (Dox: 2 mg/mL; n = 11) via drinking water. Shown are illustrations of pancreatic tumors in situ (A and B; white arrowheads) and excised mesenteries with metastases (D and E; yellow arrowheads) from vehicle or doxycycline-treated mice. C, evaluation of tumor weight; P = 0.018, Mann–Whitney test. F and J–L, contingency graphs of mesenteric metastasis (F; P = 0.003), tumor invasion into duodenum (J; P = 0.0005), and stomach (K; P = 0.002), and metastatic spread to retroperitoneal lymph nodes (L; P = 0.0002; all Fisher exact test). G–I, CD31+ microvessel densities in vehicle (G; n = 12) and doxycycline-treated (H; n = 11) tumors were quantified (I; P = 0.036). Arrowheads, tumor vessels. Scale bar, 200 μm.
with ROBO1 knockdown or sequestration of endogenous SLIT2. The SLIT2-mediated control of tumor spread in our experimental models translates to the clinical observation that low tumoral SLIT2 mRNA levels correlated to nodal spread of PDACs. Our in vitro data, furthermore, assign a novel function to SLIT2, as they implicate SLIT2 in the control of pancreatic cancer cell invasion along outgrowing neurites.

Published expression arrays indicate expression of SLIT2 in ductal epithelial cells of the healthy pancreas (34, 35), which fits our detection of SLIT2 mRNA expression in nontransformed pancreas and ductal HPDE cells. We, furthermore, found ROBO4 in the (neo)vasculature, whereas ductal epithelial cells and intrapancreatic nerves displayed ROBO1 immunoreactivity. These observations suggest that SLIT2–ROBO signaling occurs physiologically in the pancreas, which is in line with the reported chemorepellent function of SLIT2 in epithelial differentiation and ductal morphogenesis during breast, lung, colon, and kidney development (20–22). In turn, loss of SLIT2 resulted in deregulated morphogenesis and aberrant epithelial growth in lung and breast cancer (10), which agrees with the current observation of reduced SLIT2 mRNA expression in PDAC. Moreover, the concept of SLIT2 as a tumor suppressor in PDAC is supported by the frequent loss of SLIT2 expression in PDAC cell lines (33, 34).

Our experimental reexpression of SLIT2 in PDAC cells inhibited directed migration and invasion via ROBO1-mediated auto/paracrine mechanisms. These observations are in line with existing concepts on how loss of SLIT2 affects tumor progression, which propose that SLIT2 counteracts cell motility induced by chemoattractant stimulation via cytokines or growth factors (36–38). Different from the SLIT2 mode of action in breast (39) and lung cancer cells (40), we did not detect a SLIT2-dependent regulation of AKT activity in PDAC cells (data not shown), suggesting a cell type–specific wiring of downstream signals.

Three orthotopic in vivo models in our study emphasized the capacity of SLIT2/ROBO1 signals to reduce metastatic spread and local invasive growth. This aspect is reflected in the clinical situation, as low SLIT2 mRNA in PDAC specimens was associated with higher incidence and a higher extent of lymph node metastasis. Fittingly, published expression profiles of PDAC specimens with or without lymph node metastasis listed SLIT2 among genes with reduced expression in lymph node–positive PDAC (41).

The SLIT2-mediated suppression of tumor spread in our in vivo models may arise from reduced tumor cell motility, and/or as a consequence of impaired tumor angiogenesis. In fact, the enhanced tumor spread in our DANG orthotopic xenografts with ROBO1 knockdown suggests that altered auto/paracrine SLIT2–ROBO1 signaling in tumor cells is sufficient for this phenotype.

Although effects of SLIT2 on angiogenesis in two PDAC models indicated an antiangiogenic action, in vitro observations suggest a more complex situation. Intriguingly, purified SLIT2N from commercial sources stimulated endothelial cell migration, whereas SLIT2 produced by PDAC cells inhibited the process, creating a need for further investigation. Explanations are speculative at this time: (i) cofactors produced by PDAC cells possibly account for the inhibitory outcome, which fits the observation that both purified SLIT2N and tumor-
derived SLIT2 preparations uniformly inhibit PDAC cell migration. Precedence for such a cofactor-dependent switch in SLIT2 action was reported with respect to Ephrin-A1 or matrix components (32, 42, 43). (ii) Purified SLIT2N preparations contain but the N-terminal fragment, which binds and activates ROBO1/2 receptors. In contrast, supernatants from PDAC cells contain full-length SLIT2 and the full range of processing products. As full-length SLIT2 may act antagonistic to SLIT2N (32, 42) the differential action of cleavage fragments is a possibility that we actively investigate. (iii) Endothelial cells also express ROBO4 receptors, raising the possibility that the differential repertoire and activation of ROBO4 versus ROBO1/2 determines the migratory response. Published data from siRNA knockdown of either ROBO4 or ROBO1 in lung HMVECs indicate that SLIT2N blunted the VEGF-induced migration of these cells via ROBO4, but not ROBO1 (44). Reports on SLIT2 effects in the even more complex situation of in vivo angiogenesis also offer disparate findings. According to genetic loss-of-function studies, ROBO4 activation via SLIT2 counteracted VEGF-induced vascular leak, whereas disruption of SLIT2–ROBO4 signaling stimulated pathologic angiogenesis and vessel leakiness (45, 46). Other reports have, however, suggested a prometastatic and proangiogenic function of SLIT2 on experimental tumor growth (10, 23, 47, 48). Future,
A more detailed understanding of SLIT2/ROBO signaling will hopefully fit these experimental data to a unified concept.

Notably, our studies identified a novel, critical function of SLIT2 for the interaction of PDAC cells with peripheral nerves. Reexpression of SLIT2 in PDAC cells impaired their capacity to navigate along contacted neurites. In comparison, no effect on the movements of tumor cells without neurite contact was apparent, suggesting that SLIT2 counteracted mechanisms that facilitate directional mobility of tumor cells in the immediate vicinity and/or created by contacting nerves. In conjunction with the inhibitory effects of SLIT2 on the migration of PDAC cells against chemoattractant gradients released by neuronal cells in Transwell assays, we assume that both mechanisms, i.e., chemoattraction and contact cues, can contribute.

Currently, we are unable to address SLIT2 function in neural invasion in our xenograft models, which display poor innervation. However, we observed ROBO1 immunoreactivity in pancreatic nerves of human PDAC. During development, the spatial-temporal expression of SLIT2–ROBO1 guidance cues help to confine the patterned migration of those neural crest cells, which give rise to the enteric and sensory neuronal network innervating the pancreas (17, 49). Mechanistically, SLIT2 expressed from tissues adjacent to the trajectory routes provide guidance by repelling ROBO1-expressing neural crest cells and preventing them from entering regions with high concentrations of SLIT2. In analogy to this developmental role, SLIT2 and ROBO1 may conceivably restrict peripheral innervation of the adult pancreas by guiding and/or counteracting growth factor and chemokine-mediated attraction of...
pancreatic nerves. In support of a role for axon guidance molecules in the correct growth and patterning of peripheral nerves during organ innervation, loss-of-function studies implicated SLIT2–ROBO1 repulsion in axon fasciculation of motor neurons during muscle innervation (50). In PDAC, silencing of SLIT2 in epithelial tumor cells may possibly relieve repulsion between pancreatic nerves and surrounding tissues and consequently facilitate neural invasion. Our in vitro data support this scenario by demonstrating swift movement of PDAC cells along axons, which is impairs by SLIT2 reexpression. Definitive evidence awaits future studies.

Taken together, our results provide evidence that SLIT2 functions as a suppressor of metastasis and local tumor spread in experimental models of PDAC. Mechanistically, tumor cell–derived SLIT2 reduced the motility of PDAC and endothelial cells toward chemotactants, and, furthermore, prevented PDAC cells from efficient directional movement along conduits provided by axonal projections from cultured ganglia. These experimental findings are reflected in our clinical observation of more extensive nodal metastasis in PDAC with low SLIT2 mRNA. Our data thus emphasize the importance to further assess the Slit–ROBO pathway activity as potential diagnostic and/or prognostic marker, or as candidate therapeutic target in PDAC.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

References

Axon Guidance Factor SLIT2 Inhibits Neural Invasion and Metastasis in Pancreatic Cancer
Andreas Göhrig, Katharina M. Detjen, Georg Hilfenhaus, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-13-1012

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2014/01/23/0008-5472.CAN-13-1012.DC1

Cited articles
This article cites 50 articles, 18 of which you can access for free at:
http://cancerres.aacrjournals.org/content/74/5/1529.full.html#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
/content/74/5/1529.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.