BREAKING ADVANCES

1623 Highlights from Recent Cancer Literature

REVIEWS

1625 Contributions of the Host Microenvironment to Cancer-Induced Bone Disease
Sam W.Z. Olechowicz and Claire M. Edwards

1632 Optimization of Natural Killer T Cell–Mediated Immunotherapy in Cancer Using Cell-Based and Nanovector Vaccines
C. Faveeuw and F. Trottein

1639 Noncanonical Functions of Telomerase: Implications in Telomerase-Targeted Cancer Therapies
Yinghui Li and Vinay Tergaonkar

PRIORITY REPORTS

1645 Universal Marker and Detection Tool for Human Sarcoma Circulating Tumor Cells
Précis: This study describes the first universal and specific marker to detect circulating sarcoma cells in the blood, with the capability to detect any type of sarcoma, offering a key prognostic tool to monitor cancer metastasis and relapse in sarcoma patients.

1651 PCAT-1, a Long Noncoding RNA, Regulates BRCA2 and Controls Homologous Recombination in Cancer
John R. Prensner, Wei Chen, Matthew K. Iyer, Qi Cao, Teng Ma, Sumin Han, Anirban Sahu, Rohit Malik, Kari Wilder-Romans, Nora Navone, Christopher J. Logothetis, John C. Araujo, Louis L. Pisters, Ashutosh K. Tewari, Christine E. Canman, Karen E. Knudsen, Naoki Kitabayashi, Mark A. Rubin, Francesco Demichelis, Theodore S. Lawrence, Arul M. Chinnaiyan, and Felix Y. Feng
Précis: A long noncoding RNA known to be oncogenic is found to promote cell death during genotoxic stress, suggesting a novel clinical correlation between this little-understood class of RNAs and genotoxic cancer therapies.

INTEGRATED SYSTEMS AND TECHNOLOGIES

1661 Cancer-Associated Mutations in Healthy Individuals: Assessing the Risk of Carcinogenesis
Ignacio A. Rodriguez-Brenes, Natalia L. Komarova, and Dominik Wodarz
Précis: Understanding how limits on cellular replication influence the fate of altered but nonneoplastic cells in healthy tissue may make it possible to estimate the risk posed by cancer-associated mutations found in healthy individuals.

MICROENVIRONMENT AND IMMUNOLOGY

1670 Identification of Immune Factors Regulating Antitumor Immunity Using Polymeric Vaccines with Multiple Adjuvants
Précis: This paper utilizes a new method to identify immune components critical to the efficacy of antitumor immune responses to tumors.

MOLECULAR AND CELLULAR PATHOBIOLOGY

1682 FoxO Transcription Factors Promote AKT Ser473 Phosphorylation and Renal Tumor Growth in Response to Pharmacologic Inhibition of the PI3K–AKT Pathway
Aifu Lin, Hai-long Piao, Li Zhuang, Dos D. Sarbassov, Li Ma, and Boyi Gan
Précis: A transcription factor that functions in tumor suppression was unexpectedly found to instead promote renal tumor growth under conditions of PI3K–AKT inhibition, with implications on how to improve antitumor responses.

1694 Immune Escape and Survival Mechanisms in Circulating Tumor Cells of Colorectal Cancer
Gunnar Steinert, Sebastian Scholch, Thomas Niemietz, Naoki Iwata, Sebastian A. García, Bianca Behrens, Anita Voigt, Matthias Kloor, Axel Benner, Ulrich Bork, Nuh N. Rahbari, Markus W. Buchler, Nikolos H. Stockeclain, Jürgen Weitz, and Moritz Koch
Précis: These results show that circulating colon tumor cells are genetically different from the primary colon tumor, exhibiting an immunosuppressive phenotype that enables them to evade immune eradication.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>1705</td>
<td>UTX and MLL4 Coordinate Transcriptional Programs for Cell Proliferation and Invasiveness in Breast Cancer Cells</td>
<td>Jae-Hwan Kim, Amrish Sharma, Shilpa S. Dhar, Sung-Hun Lee, Bingnan Gu, Chia-Hsin Chan, Hui-Kuan Lin, and Min Gyu Lee</td>
<td></td>
</tr>
<tr>
<td>1718</td>
<td>Neuroplastic Changes Occur Early in the Development of Pancreatic Ductal Adenocarcinoma</td>
<td>Rachelle E. Stopczynski, Daniel P. Normolle, Douglas J. Hartman, Haoqiang Ying, Jennifer J. DeBerry, Klaus Bielefeldt, Andrew D. Rhim, Ronald A. DePinho, Kathryn M. Albers, and Brian M. Davis</td>
<td></td>
</tr>
<tr>
<td>1728</td>
<td>HDAC2 Provides a Critical Support to Malignant Progression of Hepatocellular Carcinoma through Feedback Control of mTORC1 and AKT</td>
<td>Ji Heon Noh, Hyun Jin Bae, Jung Woo Eun, Qingyu Shen, Se Jin Park, Hyung Seok Kim, Boa Nam, Woo Chan Shin, Eun Kyung Lee, Kyungbun Lee, Ja-Jun Jang, Won Sang Park, Jung Young Lee, and Suk Woo Nam</td>
<td></td>
</tr>
<tr>
<td>1752</td>
<td>Genetic Validation of the Protein Arginine Methyltransferase PRMT5 as a Candidate Therapeutic Target in Glioblastoma</td>
<td>Fengting Yan, Lapo Alinari, Mark E. Lustberg, Ludmila Katherine Martin, Hector M. Cordero-Nieves, Yeshavath Banasavadi-Siddegowda, Selene Virk, Jill Barnholtz-Sloan, Erica Hlavin Bell, Jeffrey Wojton, Naduparambil K. Jacob, Arnab Chakravarti, Michal O. Nowicki, Xin Wu, Rosa Lapalombella, Jharna Datta, Bo Yu, Kate Gordon, Amy Haseley, John T. Patton, Porsha L. Smith, John Ryu, Xiaoli Zhang, Xiaokui Mo, Guido Marcucci, Gerard Nuovo, Chang-Hyuk Kwon, John C. Byrd, E. Antonio Chiocca, Chenglong Li, Said Sif, Samson Jacob, Sean Lawler, Balveen Kaur, and Robert A. Baiocchi</td>
<td></td>
</tr>
<tr>
<td>1766</td>
<td>Activated ERBB2/HER2 Licenses Sensitivity to Apoptosis upon Endoplasmic Reticulum Stress through a PERK-Dependent Pathway</td>
<td>Rosa Martín-Pérez, Carmen Palacios, Rosario Yerbes, Ana Cano-González, Daniel Iglesias-Serret, Joan Gil, Mauricio J. Reginato, and Abelardo López-Rivas</td>
<td></td>
</tr>
<tr>
<td>1778</td>
<td>ATDC/TRIM29 Phosphorylation by ATM/MAPKAP Kinase 2 Mediates Radioresistance in Pancreatic Cancer Cells</td>
<td>Lidong Wang, Huilin Yang, Phillip L. Palmbos, Gina Ney, Taylor Ann Deitzler, Dawn Coleman, Jacob Leflein, Mary Davis, Min Zhang, Wenhua Tang, J. Kevin Hicks, Corey M. Helchowski, Jayendra Prasad, Theodore S. Lawrence, Liang Xu, Xiaochun Yu, Christine E. Canman, Mats Ljungman, and Diane M. Simeone</td>
<td></td>
</tr>
</tbody>
</table>

The table of contents also contains a section on Therapeutics, Targets, and Chemical Biology.
Alarmin IL-33 Acts as an Immunoadjuvant to Enhance Antigen-Specific Tumor Immunity
Daniel O. Villarreal, Megan C. Wise, Jewell N. Walters, Emma L. Reuschel, Min Joung Choi, Nyamekye Obeng-Adjei, Jian Yan, Matthew P. Morrow, and David B. Weiner

Precise: These findings offer a preclinical proof of concept that IL-33 improves the immune potency of tumor vaccines, promoting tumor cell clearance and regressions to fully empower cancer immunotherapy.

miR-30-5p Functions as a Tumor Suppressor and Novel Therapeutic Tool by Targeting the Oncogenic Wnt/β-Catenin/BCL9 Pathway
Jian-Jun Zhao, Jianhong Lin, Di Zhu, Xujun Wang, Daniel Brooks, Ming Chen, Zhang-Bo Chu, Kohichi Takada, Bryan Ciccarelli, Samir Admin, Jianguo Tao, Yu-Tzu Tai, Steven Teon, Geraldine Pinkus, Winston Patrick Kuo, Teru Hideshima, Mary Bouxsein, Nikhil Munshi, Kenneth Anderson, and Ruben Carrasco

Precise: These findings offer a preclinical rationale to explore delivery of a tumor-suppressive microRNA as an effective therapeutic strategy to eradicate multiple myeloma cells.

Chromosome 10, Frequently Lost in Human Melanoma, Encodes Multiple Tumor-Suppressive Functions
Lawrence N. Kwong and Lynda Chin

Precise: These results show how regional aberrations in chromosome copy number can lead to loss of multiple important tumor-suppressor functions in cancer.

Id2 Mediates Oligodendrocyte Precursor Cell Maturation Arrest and Is Tumorigenic in a PDGF-Rich Microenvironment
Matthew C. Havrda, Brenton R. Paolella, Cong Ran, Karola S. Jering, Christina M. Wray, Jaclyn M. Sullivan, Audrey Nailor, Yasuyuki Hitoshi, and Mark A. Israel

Precise: This study of distinct subsets of adult tissue progenitors points to a maturation arrest of oligodendrogial precursor cells in the pathogenesis of PDGF-dependent brain tumors.

Sox2 Is Required to Maintain Cancer Stem Cells in a Mouse Model of High-Grade Oligodendroglioma
Rebecca Favaro, Irene Appolloni, Serena Pellegratta, Alexandria Badiola Sanga, Pierfrancesco Pagella, Eleonora Gambini, Federica Pisati, Sergio Ottolenghi, Maria Foti, Gaetano Finocchiaro, Paolo Malatesta, and Silvia K. Nicolì

Precise: These findings define an immunotherapeutic target for treatment of a form of brain malignancy, which acts by depleting cancer stem-like cells required to sustain the malignancy in a mouse model system.

Expression of Variant Isoforms of the Tyrosine Kinase SYK Determines the Prognosis of Hepatocellular Carcinoma
Jian Hong, Yunfei Yuan, Jianping Wang, Yadi Liao, Rubaii Zou, Chuanlong Zhu, Binkui Li, Yi Li, Pinzhu Huang, Zongwei Wang, Wenyu Lin, Yixin Zeng, Jia Le Dai, and Raymond T. Chung

Precise: These findings define opposing functions of the two isoforms of the SYK kinase in liver cancer, with the larger isoform enhancing invasion and the smaller isoform enhancing metastasis, patterns that in patient specimens offer strong predictors of overall survival.

MET Signaling in Colon Cancer Stem-like Cells Blunts the Therapeutic Response to EGFR Inhibitors
Paolo Luraghi, Gigliola Reato, Elia Cipriano, Francesco Sassi, Francesca Orzan, Viola Bigatto, Francesca De Bacco, Elena Menieltti, May Han, William M. Rideout III, Timothy Perera, Andrea Bertotti, Livio Trusulino, Paolo M. Comoglio, and Carla Boccaccio

Precise: Using cancer stem-like cells isolated directly from metastatic colorectal patients, this study reveals the importance of both EGFR and MET signaling and offers a strong preclinical proof of concept for concurrent targeting of both of these receptors in the clinical setting.

p300 Acetyltransferase Regulates Androgen Receptor Degradation and PTEN-Deficient Prostate Tumorigenesis
Jian Zhong, Liya Ding, Laura R. Bohrer, Yunqian Pan, Ping Liu, Jun Zhang, Thomas J. Sebo, R. Jeffrey Karnes, Donald J. Tindall, Jan van Deursen, and Haojie Huang

Precise: This article identifies a key determinant in degradation of the androgen receptor, highlighting its importance as a candidate therapeutic target in managing prostate cancers marked by loss of the tumor suppressor PTEN.
CORRECTION

1881 Correction: EPR Oxygen Images Predict Tumor Control by a 50% Tumor Control Radiation Dose

ABOUT THE COVER

Pancreas from a 12-week-old KPCT (p48-Cre; LSL-Kras^{G12D}; p53^{fl/fl}; Rosa26-LSL-tdTomato) mouse with precancerous PanIN lesions but no tumor. dtTomato-label (red) marks pancreas epithelial-derived cells, in this case normal-appearing acinar cells. PGP 9.5 antibody (green) was used to stain nerve fibers that exhibit hypertrophy and sprouting within pancreatic tissue, beginning at histologic precancer stages and increasing as the disease progresses. For details, see article by Stopczynski and colleagues on page 1718.