Table of Contents

Cancer Research

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Abstract / Precis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1623</td>
<td>Highlights from Recent Cancer Literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1625</td>
<td>Contributions of the Host Microenvironment to Cancer-Induced Bone Disease</td>
<td>Sam W.Z. Olechnowicz and Claire M. Edwards</td>
<td>Precis: Understanding how limits on cellular replication influence the fate of altered but nonneoplastic cells in healthy tissue may make it possible to estimate the risk posed by cancer-associated mutations found in healthy individuals.</td>
</tr>
<tr>
<td>1632</td>
<td>Optimization of Natural Killer T Cell–Mediated Immunotherapy in Cancer Using Cell-Based and Nanovector Vaccines</td>
<td>C. Faveeuw and F. Trottein</td>
<td></td>
</tr>
<tr>
<td>1639</td>
<td>Noncanonical Functions of Telomerase: Implications in Telomerase-Targeted Cancer Therapies</td>
<td>Yinghui Li and Vinay Tergaonkar</td>
<td></td>
</tr>
<tr>
<td>1645</td>
<td>Universal Marker and Detection Tool for Human Sarcoma Circulating Tumor Cells</td>
<td>Arun Satelli, Abhisek Mitra, Jeffrey J. Cutrera, Marcos Devarie, Xueqing Xia, Davis R. Ingram, Denada Dibra, Neeta Somaiah, Keila E. Torres, Vinod Ravi, Joseph A. Ludwig, Eugene S. Kleinerman, and Shulin Li</td>
<td>Precis: This study describes the first universal and specific marker to detect circulating sarcoma cells in the blood, with the capability to detect any type of sarcoma, offering a key prognostic tool to monitor cancer metastasis and relapse in sarcoma patients.</td>
</tr>
<tr>
<td>1651</td>
<td>PCAT-1, a Long Noncoding RNA, Regulates BRCA2 and Controls Homologous Recombination in Cancer</td>
<td>John R. Prensner, Wei Chen, Matthew K. Iyer, Qi Cao, Teng Ma, Sumin Han, Anirban Sahu, Rohit Malik, Kari Wilder-Romans, Nora Navone, Christopher J. Logothetis, John C. Araujo, Louis L. Pistars, Ashtosh K. Tewari, Christine E. Caanman, Karen E. Knudsen, Naoki Kitabayashi, Mark A. Rubin, Francesca Demichelis, Theodore S. Lawrence, Arul M. Chinnaiyan, and Felix Y. Feng</td>
<td>Precis: A long noncoding RNA known to be oncogenic is found to promote cell death during genotoxic stress, suggesting a novel clinical correlation between this little-understood class of RNAs and genotoxic cancer therapies.</td>
</tr>
<tr>
<td>1661</td>
<td>Cancer-Associated Mutations in Healthy Individuals: Assessing the Risk of Carcinogenesis</td>
<td>Ignacio A. Rodriguez-Brenes, Natalia L. Komarova, and Dominik Wodarz</td>
<td>Precis: A long noncoding RNA known to be oncogenic is found to promote cell death during genotoxic stress, suggesting a novel clinical correlation between this little-understood class of RNAs and genotoxic cancer therapies.</td>
</tr>
<tr>
<td>1682</td>
<td>FoxO Transcription Factors Promote AKT Ser473 Phosphorylation and Renal Tumor Growth in Response to Pharmacologic Inhibition of the PI3K–AKT Pathway</td>
<td>Aifu Lin, Hai-long Piao, Li Zhuang, Dos D. Sarbassov, Li Ma, and Boyi Gan</td>
<td>Precis: A transcription factor that functions in tumor suppression was unexpectedly found to instead promote renal tumor growth under conditions of PI3K–AKT inhibition, with implications on how to improve antitumor responses.</td>
</tr>
</tbody>
</table>

March 15, 2014 • Volume 74 • Number 6

© 2014 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from cancerres.aacrjournals.org on April 19, 2017.
1705 UTX and MLL4 Coordinately Regulate Transcriptional Programs for Cell Proliferation and Invasiveness in Breast Cancer Cells
Jae-Hwan Kim, Amrish Sharma, Shilpa S. Dhar, Sung-Hun Lee, Bingnan Gu, Chia-Hsin Chan, Hui-Kuan Lin, and Min Gyu Lee

Précis: These findings show how coordinated regulation of gene expression programs by two distinct epigenetic modifiers drives malignant properties in breast cancer cells.

1718 Neuroplastic Changes Occur Early in the Development of Pancreatic Ductal Adenocarcinoma
Rachelle E. Stopczynski, Daniel P. Normolle, Douglas J. Hartman, Haoqiang Ying, Jennifer J. DeBerry, Klaus Bielefeldt, Andrew D. Rhim, Ronald A. DePinho, Kathryn M. Albers, and Brian M. Davis

Précis: These studies show that changes in the peripheral nervous system occur early during tumor development and may play an important role in disease progression.

1728 HDAC2 Provides a Critical Support to Malignant Progression of Hepatocellular Carcinoma through Feedback Control of mTORC1 and AKT
Ji Heon Noh, Hyun Jin Bae, Jung Woo Eun, Qinyu Shen, Se Jin Park, Hyung Seok Kim, Bosam Nam, Woo Chan Shin, Eun Kyung Lee, Kyungbun Lee, J.-Jun Jang, Won Sang Park, Jung Young Lee, and Suk Woo Nam

Précis: This study of a histone deacetylase that is essential for mitogenic signaling in liver cancers may offer a new interventional target for more effective therapy.

1739 p16INK4A Impairs Homologous Recombination–Mediated DNA Repair in Human Papillomavirus–Positive Head and Neck Tumors
Rüveyda Dok, Peter Kalev, Evert Jan Van Limbergen, Layka Abbasi Ashag, Iria Vázquez, Esther Hauben, Anna Sablina, and Sandra Nuyts

Précis: These findings reveal an unexpected function of the tumor suppressor p16INK4A in promoting the homologous recombination pathway of DNA repair, suggesting that p16INK4A status in head and neck cancer patients may offer an independent marker to predict their response to radiotherapy.

1752 Genetic Validation of the Protein Arginine Methyltransferase PRMT5 as a Candidate Therapeutic Target in Glioblastoma

Précis: This study presents a novel candidate prognostic and therapeutic target in aggressive brain cancers, with implications for understanding the basis for poor patient survival.

1766 Activated ERBB2/HER2 Licenses Sensitivity to Apoptosis upon Endoplasmic Reticulum Stress through a PERK-Dependent Pathway
Rosa Martín-Pérez, Carmen Palacios, Rosario Yerbes, Ana Cano-González, Daniel Iglesias-Serret, Joan Gil, Mauricio J. Reginato, and Abelardo López-Rivas

Précis: These findings offer a rationale for the therapeutic exploration of treatments inducing ER stress against mutant ERBB2-expressing breast tumor cells.

1778 ATDC/TRIM29 Phosphorylation by ATM/MAPKAP Kinase 2 Mediates Radioresistance in Pancreatic Cancer Cells
Lidong Wang, Huibin Yang, Phillip L. Palmbos, Gina Ney, Taylor Ann DeZler, Dawn Coleman, Jacob Leflein, Mary Davis, Min Zhang, Wenhua Tang, J. Kevin Hicks, Corey M. Helchowski, Jayendra Prasad, Theodore S. Lawrence, Liang Xu, Xiaochun Yu, Christine E. Canman, Mats Jüngman, and Diane M. Simeone

Précis: These findings link a TRIM family protein that binds DNA and p53 to radioresistance in pancreatic cancer, suggesting its candidacy as a therapeutic target to improve the efficacy of DNA-damaging treatments used to treat this disease.
1789 Alarmin IL-33 Acts as an Immunoadjuvant to Enhance Antigen-Specific Tumor Immunity
Daniel O. Villarreal, Megan C. Wise, Jewell N. Walters, Emma L. Reuschel, Min Joung Choi, Nyamekye Obeng-Adjei, Jian Yan, Matthew P. Morrow, and David B. Weiner

Precise: These findings offer a preclinical proof of concept that IL-33 improves the immune potency of tumor vaccines, promoting tumor cell clearance and regressions to fully empower cancer immunotherapy.

1801 miR-30-5p Functions as a Tumor Suppressor and Novel Therapeutic Tool by Targeting the Oncogenic Wnt/β-Catenin/BCL9 Pathway
Jian-Jun Zhao, Jianhong Lin, Di Zhu, Xujun Wang, Daniel Brooks, Ming Chen, Zhang-Bo Chu, Kohichi Takada, Bryan Ciccarelli, Samir Admin, Jianguo Tao, Yu-Tzu Tai, Steven Teon, Geraldine Pinkus, Winston Patrick Kuo, Teru Hideshima, Mary Bouxsein, Nikhil Munshi, Kenneth Anderson, and Ruben Carrasco

Precise: These findings offer a preclinical rationale to explore delivery of a tumor-suppressive microRNA as an effective therapeutic strategy to eradicate multiple myeloma cells.

1814 Chromosome 10, Frequently Lost in Human Melanoma, Encodes Multiple Tumor-Suppressive Functions
Lawrence N. Kwong and Lynda Chin

Precise: These results show how regional aberrations in chromosome copy number can lead to loss of multiple important tumor-suppressor functions in cancer.

1822 Id2 Mediates Oligodendrocyte Precursor Cell Maturation Arrest and Is Tumorigenic in a PDGF-Rich Microenvironment
Matthew C. Havrda, Brenton R. Paolella, Cong Ran, Karola S. Jering, Christina M. Wray, Jaclyn M. Sullivan, Audrey Nailor, Yasuyuki Hitoshi, and Mark A. Israel

Precise: This study of distinct subsets of adult tissue progenitors points to a maturation arrest of oligodendroglial precursor cells in the pathogenesis of PDGF-dependent brain tumors.

1833 Sox2 Is Required to Maintain Cancer Stem Cells in a Mouse Model of High-Grade Oligodendroglioma
Rebecca Favaro, Irene Appolloni, Serena Pellegratta, Alexandra Badiola Sangha, Pierfrancesco Pagella, Eleonora Gambini, Federica Pisati, Sergio Ottolenghi, Maria Foti, Gaetano Finocchiaro, Paolo Malatesta, and Silvia K. Nicolis

Precise: These findings define an immunotherapeutic target for treatment of a form of brain malignancy, which acts by depleting cancer stem-like cells required to sustain the malignancy in a mouse model system.

1845 Expression of Variant Isoforms of the Tyrosine Kinase SYK Determines the Prognosis of Hepatocellular Carcinoma
Jian Hong, Yunfei Yuan, Jianping Wang, Yadi Liao, Rubai Zou, Chuanlong Zhu, Binkui Li, Yi Liang, Pinzhu Huang, Zongwei Wang, Wenyu Lin, Yixin Zeng, Jia Le Dai, and Raymond T. Chung

Precise: These findings define opposing functions of the two isoforms of the SYK kinase in liver cancer, with the larger isoform enhancing invasion and the smaller isoform enhancing metastasis, patterns that in patient specimens offer strong predictors of overall survival.

1857 MET Signaling in Colon Cancer Stem-like Cells Blunts the Therapeutic Response to EGFR Inhibitors
Paolo Luraghi, Gigliola Reato, Elia Cipriano, Francesco Sassi, Francesca Orzan, Viola Bigatto, Francesca De Bacco, Elena Menietti, May Han, William M. Rideout III, Timothy Perera, Andrea Bertiotti, Livio Trusolino, Paolo M. Comoglio, and Carla Boccaccio

Precise: Using cancer stem-like cells isolated directly from metastatic colorectal patients, this study reveals the importance of both EGFR and MET signaling and offers a strong preclinical proof of concept for concurrent targeting of both of these receptors in the clinical setting.

1870 p300 Acetyltransferase Regulates Androgen Receptor Degradation and PTEN-Deficient Prostate Tumorigenesis
Jian Zhong, Liya Ding, Laura R. Bohrer, Yunqian Pan, Ping Liu, Jun Zhang, Thomas J. Sebo, R. Jeffrey Karnes, Donald J. Tindall, Jan van Deursen, and Haojie Huang

Precise: This article identifies a key determinant in degradation of the androgen receptor, highlighting its importance as a candidate therapeutic target in managing prostate cancers marked by loss of the tumor suppressor PTEN.
CORRECTION

1881 Correction: EPR Oxygen Images Predict Tumor Control by a 50% Tumor Control Radiation Dose

About the Cover

Pancreas from a 12-week-old KPCT (p48-Cre; LSL-Kras^{G12D}; p53^{tm1Wts1}; Rosa26-LSL-tdTomato) mouse with precancerous PanIN lesions but no tumor. tdTomato-label (red) marks pancreas epithelial-derived cells, in this case normal-appearing acinar cells. PGP 9.5 antibody (green) was used to stain nerve fibers that exhibit hypertrophy and sprouting within pancreatic tissue, beginning at histologic precancer stages and increasing as the disease progresses. For details, see article by Stopczynski and colleagues on page 1718.
Cancer Research

74 (6)

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/74/6

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.