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Figure 6. Histologic examination of glioma arising in hPDGFB (+) mice orthotopically inoculated with NSC (Id2-GFP). A and B, photomicrographs of
hematoxylin and eosin (H&E) stained histologic sections showing the ventral forebrain of a WT animal (A) and an hPDGFB (+) age-matched littermate (B)
orthotopically inoculated with NSC (Id2-GFP). Original magnification, x4; scale bars, 200 nrm. C and D, photomicrographs of H&E stained histologic sections
of tumors obtained from hPDGFB (+) animals inoculated with NSC (Id2-GFP). Original magnification, x20; scale bars, 100 nm. E-G, adjacent histologic
sections to B immunostained for Gfap, Olig2, and Ki67 (brown) and counterstained with hematoxylin (blue); original magnification, x4. H, quantification of
Olig2/Ng2, Olig2/PDGFRa, and Olig2/Ki67 double-positive cells detected using immunostaining at 3 and 7 days following the initiation of OPC-directed
differentiation. Data, mean + SD from two independent experiments plated in triplicate; *, P < 0.05. |, Kaplan-Meier survival plot from NSC (Id2-GFP)
inoculated 3 days after initiation of after OPC-directed differentiation compared with NSC (Id2-GFP) inoculated 7 days following differentiation. J, histologic
sections taken from an hPDGFB (+) animal following inoculation NSC (Id2-GFP) differentiated for 3 days under OPC enrichment conditions. Sections
are stained with H&E, Olig2, and Ki67 (brown). Original magnification, x10; scale bars, 100 nm.
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Id2 Is Tumorigenic in a PDGF-Rich Microenvironment

for a mechanism by which maturation-arrested OPCs become
vulnerable to transformation and give rise to tumors resem-
bling a clinically relevant subset of glioblastoma.

Our findings provide evidence that deregulation of Id2 in
NSCs can lead to increased numbers of early OPC-like cells
(Figs. 1 and 2), a target cell for the development of glioma (6).
Olig2 is important not only as a marker of cells in the oligo-
dendrocyte lineage, but also as a gene responsible for early
differentiation of NSCs along the oligodendrocyte lineage (35),
and proliferative expansion of neuronal precursors and glioma
cells (36). Our model supports the work of others indicating
that OPCs can be a cell of origin for glioma. In our study, we also
observed that quiescent, maturation-arrested OPCs can give
rise to glioma upon exposure to enhanced PDGF (Fig. 6H-J).
We speculate that in a PDGF-rich brain microenvironment,
maturation-arrested OPCs reenter the cell cycle in response to
PDGF stimulation, resulting in tumor formation. This obser-
vation highlights the potential utility of our novel mouse model
in characterizing the importance of an oncogenic microenvi-
ronment in promoting gliomagenic transformation in prema-
lignant OPCs.

A predictable interpretation of our findings, that Id2 protein
inhibits OPC maturation by directly blocking the activity of
the bHLH transcription factor Olig2 (37), is confounded by the
observation that differentiation NSC (Id2~/~) do not give rise
to Olig2™ cells (Fig. 1C). Rather, Id2 is necessary for the
expression of Olig2. Id2-mediated repression of Heyl to
enhance the expression of Olig2 indicates a dual role for Id2.
The first of these in promoting early oligodendrocytic differ-
entiation of NSCs into OPCs (Figs. 1 and 2) and the second, later
in differentiation, inhibiting OPC maturation into mature
oligodendrocytes (Fig. 1) by direct interaction with Olig2 as
described by others (9, 37). Consistent with this model is our
observation that immunoprecipitation of 1d2 in undifferenti-
ated NSCs did not result in the coprecipitation of Olig2,
although Id2 and Olig2 did coimmunoprecipitate from NSCs
undergoing differentiation (our unpublished observations).
This dual role for Id2 in facilitating expansion of the OPC
compartment by enhancing oligodendrocytic differentiation,
while blocking later OPC maturation, may be of particular
importance in situations in which Id2 is deregulated, for
example, following the inactivation of 7p53 (10, 38).

In summary, we have developed a novel model of glioma-
genesis that reveals a role for maturation arrest in the devel-
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