BREAKING ADVANCES

1883 Highlights from Recent Cancer Literature

REVIEWS

1885 Obesity and Cancer: A Gut Microbial Connection
Naoko Ohtani, Shin Yoshimoto, and Eiji Hara

1890 Transforming Growth Factor-β as a Therapeutic Target in Hepatocellular Carcinoma
Gianluigi Giannelli, Erica Villa, and Michael Lahn

PRIORITY REPORT

1895 A Common Cancer-Associated DNA Polymerase ε Mutation Causes an Exceptionally Strong Mutator Phenotype, Indicating Fidelity Defects Distinct from Loss of Proofreading
Daniel P. Kane and Polina V. Shcherbakova

Précis: This study describes the functional consequences of the most frequent DNA polymerase variant linked to colorectal and endometrial cancer, challenging the recently forwarded idea that hypermutated human cancers must result from loss of exonucleolytic proofreading.

INTEGRATED SYSTEMS AND TECHNOLOGIES

1902 Noninvasive Quantification of Solid Tumor Microstructure Using VERDICT MRI
Eletheria Panagiotaki, Simon Walker-Samuel, Bernard Siow, S. Peter Johnson, Vineeth Rajkumar, R. Barbara Pedley, Mark F. Lythgoe, and Daniel C. Alexander

Précis: This article highlights the superior qualities of a novel noninvasive imaging method to monitor tumor development and therapeutic response in preclinical models.

1913 Apoptosis Imaging for Monitoring DR5 Antibody Accumulation and Pharmacodynamics in Brain Tumors Noninvasively

Précis: This preclinical study reports a method to quantify antibody accumulation and pharmacodynamics in brain tumors, where delivery after systemic administration is often difficult to assess, offering a holistic in vivo approach to assess CNS-targeting drugs.

1924 VISTA Is an Immune Checkpoint Molecule for Human T Cells
J. Louise Lines, Eririn Pantazi, Justin Mak, Lorenzo F. Sempere, Li Wang, Samuel O’Connell, Sabrina Ceeraz, Ariel A. Suriavinata, Shaofeng Yan, Marc S. Ernstoff, and Randolph Noelle

Précis: Therapeutic inactivation of CTLA-4-related molecules like VISTA may have enormous potential for generalized immunotherapy of cancer.

1933 VISTA Regulates the Development of Protective Antitumor Immunity
Isabelle Le Mercier, Wenna Chen, Janet L. Lines, Maria Day, Jiannan Li, Petra Sergent, Randolph J. Noelle, and Li Wang

Précis: This study offers a preclinical proof-of-concept to evaluate the efficacy and mechanisms of action of a VISTA-targeting antibody in multiple tumor models.

1945 Vaccine-Mediated Immunotherapy Directed against a Transcription Factor Driving the Metastatic Process
Andressa Ardi, Sofia R. Gameiro, Claudia Palena, Duane H. Hamilton, Anna Kwilas, Thomas H. King, Jeffrey Schom, and James W. Hodge

Précis: This study offers a preclinical proof-of-concept for an antimetastasis vaccine targeting Twist, a transcription factor that promotes metastasis and drug resistance in many tumor types.

1958 T Lymphocytes Restrain Spontaneous Metastases in Permanent Dormancy
Irene Romero, Cristina Garrido, Ignacio Algarra, Antonia Collado, Federico Garrido, and Angel M. García-Lora

Précis: This study describes a preclinical model for dormant metastases controlled by the immune system, an understanding of which may lead to new insights into how to extend survival by blocking relapses of metastatic cancer.

1969 IL-17A Produced by γδ T Cells Promotes Tumor Growth in Hepatocellular Carcinoma
Shoubao Ma, Qiao Cheng, Yifeng Cai, Huanle Gong, Yan Wu, Xiao Yu, Liyun Shi, Depei Wu, Chen Dong, and Haiyan Liu

Précis: These findings offer new insights into how the pro-inflammatory cytokine IL-17A influences tumor immunity, with potential implications for the development of tumor immunotherapy.
MOLECULAR AND CELLULAR PATHOBIOLOGY

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>β-Catenin Inhibitor ICAT Modulates the Invasive Motility of Melanoma Cells</td>
<td>Mélanie J. Domingues, Florian Rambow, Bastien Job, Laura Papon, Wanguo Liu, Lionel Larue, and Jacky Bonaventure</td>
</tr>
<tr>
<td>1996</td>
<td>Src Kinase Is a Novel Therapeutic Target in Lymphangioleiomomatosis</td>
<td>Alexey Tyryshkin, Abhisek Bhattacharya, and N. Tony Eissa</td>
</tr>
<tr>
<td>2015</td>
<td>LRH-1 Governs Vital Transcriptional Programs in Endocrine-Sensitive and -Resistant Breast Cancer Cells</td>
<td>Stéphanie Bianco, Mylène Brunelle, Maïka Jangal, Luca Magnani, and Nicolas Gévy</td>
</tr>
<tr>
<td>2026</td>
<td>Latency-Associated Nuclear Antigen of Kaposi Sarcoma-Associated Herpesvirus Promotes Angiogenesis through Targeting Notch Signaling Effector Hey1</td>
<td>Xing Wang, Zhiheng He, Tian Xia, Xiaofan Li, Deguang Liang, Xianzhi Lin, Hao Wen, and Ke Lan</td>
</tr>
</tbody>
</table>

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2038</td>
<td>Tumor-Infiltrating Myeloid Cells Activate Dll4/Notch/TGF-β1 Signaling to Drive Malignant Progression</td>
<td>Hidetaka Ohnuki, Kan Jiang, Dunrui Wang, Ombretta Salvucci, Hyeongil Kwak, David Sánchez-Martín, Dragan Maric, and Giovanna Tosato</td>
</tr>
<tr>
<td>2050</td>
<td>CRP Loss Cooperates with PTEN Haploinsufficiency to Drive Prostate Cancer: Implications for Epigenetic Therapy</td>
<td>Liya Ding, Shuai Chen, Ping Liu, Yunqian Pan, Jian Zhong, Kevin M. Regan, Liguo Wang, Chunrong Yu, Anthony Rizzardi, Liang Cheng, Jun Zhang, Stephen C. Schmechel, John C. Cheville, Jan Van Deursen, Donald J. Tindall, and Haojie Huang</td>
</tr>
<tr>
<td>2073</td>
<td>Bioluminescent Imaging of HPV-Positive Oral Tumor Growth and Its Response to Image-Guided Radiotherapy</td>
<td>Rong Zhong, Matt Pytynia, Charles Pelizzari, and Michael Spiotto</td>
</tr>
</tbody>
</table>
TUMOR AND STEM CELL BIOLOGY

2082 Small GTPase RhoE/Rnd3 Is a Critical Regulator of Notch1 Signaling

Précis: These findings describe an important regulatory feedback on a key tumor suppressor pathway that may have a pivotal role in epithelial tumors.

2094 Attenuation of microRNA-126 Expression That Drives CD34+38+ Stem/Progenitor Cells in Acute Myeloid Leukemia Leads to Tumor Eradication

Précis: These findings define miR-126 as a therapeutic focus to specifically eradicate stem-like cells in acute myeloid leukemias that tend to relapse in patients despite early positive responses to chemotherapy.

2106 NOTCH3 Signaling Regulates MUSASHI-1 Expression in Metastatic Colorectal Cancer Cells
Anna Pastò, Valentina Serafín, Giorgia Pilotto, Claudia Lago, Chiara Bellio, Livio Trusolino, Andrea Bertotti, Timothy Hoey, Michélina Plateroti, Giovanni Esposito, Maríca Pinazza, Marco Agostini, Donato Nitti, Alberto Amadori, and Stefano Indraccolo

Précis: These findings point to a specific inhibition of NOTCH2/3, rather than NOTCH1, as a strategy for attacking cancer stem-like cells in metastatic colon cancer.

2119 shRNA Kinome Screen Identifies TBK1 as a Therapeutic Target for HER2+ Breast Cancer

Précis: These results identify a novel target to improve treatment of HER2-positive breast cancer through leveraging existing anti-HER2 therapy.

CORRECTION

2131 Correction: Epithelial Junction Opener JO-1 Improves Monoclonal Antibody Therapy of Cancer

AC icon indicates Author Choice
For more information please visit www.aacrjournals.org

ABOUT THE COVER

Numerous reports have now demonstrated that the epithelial-to-mesenchymal transition (EMT) process is involved in solid tumor progression, metastases, and drug resistance. Several transcription factors have been implicated as drivers of EMT and metastatic progression, including Twist, which has been shown to be associated with poor prognosis and drug resistance for many carcinomas and other tumor types. The role of a Twist vaccine in experimental cancer metastases has been principally studied in the 4T1 mammary tumor model, where there is a greater than 3-fold increase in Twist expression in lung metastases (shown) vs. the primary tumor. Vaccination of mice reduced the size of primary transplanted 4T1 tumors and had an even greater antitumor effect on lung metastases of the same mice, which was dependent on Twist-specific T cells. These studies provide the rationale for vaccine-induced T-cell-mediated therapy of transcription factors involved in driving the metastatic process. For details, see article by Ardiani and colleagues on page 1945.