Hepcidin Regulation in Prostate and Its Disruption in Prostate Cancer

Lia Tesfay1, Kathryn A. Clausen2, Jin Woo Kim3, Popornima Hegde4, Xiaohong Wang4, Lance D. Miller5, Zhiyong Deng1, Nicole Blanchette1, Tara Arvedson6, Cindy K. Miranti7, Jodie L. Babitt8, Herbert Y. Lin8, Donna M. Peehl9, Frank M. Torti10, and Suzy V. Torti1

Abstract

Hepcidin is a circulating peptide hormone made by the liver that is a central regulator of systemic iron uptake and recycling. Here, we report that prostate epithelial cells also synthesize hepcidin, and that synthesis and secretion of hepcidin are markedly increased in prostate cancer cells and tissue. Prostatic hepcidin functions as an autocrine hormone, decreasing cell surface ferroportin, an iron exporter, increasing intracellular iron retention, and promoting prostate cancer cell survival. Synthesis of hepcidin in prostate cancer is controlled by a unique intersection of pathways that involves BMP4/7, IL6, Wnt, and the dual BMP and Wnt antagonist, SOSTDC1. Epigenetic silencing of SOSTDC1 through methylation is increased in prostate cancer and is associated with accelerated disease progression in patients with prostate cancer. These results establish a new connection between iron metabolism and prostate cancer, and suggest that prostatic dysregulation of hepcidin contributes to prostate cancer growth and progression.

Introduction

Hepcidin is a circulating peptide hormone made by the liver that is a master regulator of systemic iron homeostasis (1). When iron is sufficient, hepcidin is synthesized. Hepcidin binds to ferroportin, an iron efflux pump expressed in enterocytes and macrophages of the reticuloendothelial system. Binding of hepcidin to ferroportin triggers ferroportin degradation, thereby blocking iron delivery from enterocytes to the systemic circulation, as well as blocking delivery of iron catabolized by macrophages to the circulation (2). Thus, hepcidin reduces levels of systemic iron when iron is abundant. Conversely, when iron is insufficient, hepcidin synthesis is reduced, enabling increased iron uptake and recycling, and restoring iron homeostasis. Inappropriate hepcidin synthesis is triggered under inflammatory conditions and can contribute to the anemia of chronic disease by reducing iron uptake in patients with chronic inflammation, infection, and cancer (3).

Three major drivers of hepatic hepcidin transcription have been described. These are bone morphogenetic proteins (BMP), particularly BMP6 (4), inflammatory cytokines, particularly IL6, and transferring-bound iron (TF-Fe). These effectors cross-talk in a regulatory pathway that is incompletely understood (5, 6).

Hepcidin is elevated in the serum of patients with cancer. This is generally considered an indirect consequence of the increased levels of cytokines present in patients with cancer and the stimulatory effect of these cytokines on hepatic hepcidin synthesis (5). However, hepcidin synthesis is not restricted to the liver (7, 8) and tumor tissue itself may also play a role in the increased hepcidin observed in cancer (7). Furthermore, due to its ability to potentiate iron retention in cells, dysregulated hepcidin may contribute not only to altered systemic iron regulation, but also exert local effects on tumor growth and malignant potential.

Prostate cancer is the most common cancer in men, and the second leading cause of cancer-related mortality among men (9). Locally advanced prostate cancer is treated effectively by androgen deprivation therapies; however, treatments for recurrent metastatic prostate cancer, which is generally androgen insensitive, are substantially less effective (10). In this manuscript, we report that hepcidin is synthesized in prostate cancer cells and contributes to prostate cancer cell survival. Furthermore, we demonstrate that hepcidin synthesis in prostate cancer is controlled by a unique regulatory cascade that is distinct from the pathway controlling hepcidin synthesis in the liver, and that alterations in this pathway are associated with biochemical recurrence in patients with prostate cancer. These data establish a new link between iron metabolism and prostate cancer, identify an unanticipated role for hepcidin in prostate cancer, and suggest new targets for regulating prostate cancer growth and metastases.
Materials and Methods

Cell culture
Nonmalignant prostate epithelial cells (PEC; ref. 11) were cultured in keratinocyte–SEM medium (GIBCO) supplemented with 50 mg/L bovine pituitary extract and 5 µg/L human recombinant EGF (GIBCO). Cells were used at passages 4–8. Nonmalignant PrEC cells (Lonza) were cultured in Lonza PrEGM media with supplements (Lonza PrEGM Bullet-kit). DU145 cells were cultured in EMEM medium (ATCC) containing 10% FBS. LNCaP cells were cultured in RPMI-1640 (GIBCO) containing 10% FBS. PC3 cells were cultured in F-12K medium (GIBCO) containing 10% FBS. All cells were maintained at 37°C in a humidified incubator at 5% CO2.

Western blot analyses
For ferroportin analysis, nonreduced samples were used; other samples were reduced. Western blots were probed with antibodies to Phospho-Smad1–5–8 (Cell Signaling Technology), total Smad-1 (Cell Signaling Technology), Smad-5, Phospho-STAT3 (Cell Signaling Technology), STAT3 (Cell Signaling Technology), hepcidin (Fitzgerald), ferroportin (Novus Biologicals), GAPDH (Fitzgerald), or β-actin (Abcam).

Real-time qPCR
qRT-PCR was performed essentially as described (12). Additional details, including primer sequences, are provided in Supplementary Methods.

Neutralizing antibody and recombinant protein treatments
Cells were treated with 1 or 3 µg/mL anti-BMP4, anti-BMP6, anti-BMP7, or anti-IL6 neutralizing antibodies (R&D Systems). Of note, 3 µg/mL Isotope-matched anti-IgG was used as a control (R&D Systems). Human recombinant BMP6 (R&D Systems), BMP4, and BMP7 (GIBCO) were used at 50 to 200 ng/mL for 24 hours. Cells were treated with human recombinant IL6 (Peprotech) for 24 hours.

ELISA analysis for secreted hepcidin and IL6
Hepcidin was measured in conditioned RPMI-1640 media using an ELISA from R&D Systems. Hepcidin was measured in conditioned RPMI-1640 media using an ELISA from R&D Systems. IL6 was measured using an ELISA from R&D Systems.

Labile iron pool assay
Cells were seeded in 96-well plates overnight. The labile iron pool was measured after treatment with 800 nmol/L hepcidin (Peptide International) or 200 µmol/L ferric ammonium citrate (Sigma) for 4 hours (see Supplementary Methods).

Immunofluorescence
Cells were plated on an 8-chamber slide (BD Falcon) for 24 hours before treatment with 800 nmol/L hepcidin (Peptide International) for 24 hours. Cells were fixed with 4% paraformaldehyde for 15 minutes and blocked with 5% BSA at 4°C overnight. Anti-human ferroportin 38C8 (Amgen) was applied for one hour followed by rhodamine-red conjugated secondary antibody (Jackson ImmunoResearch).

Cell viability
Viability was measured using an MTS (Promega) or clonogenic assay. See Supplementary Methods for details.

Statistical analysis
Statistics are reported as the mean ± SD. Unless otherwise noted, significant differences between control and treatment groups were determined using the two-tailed unpaired Student t tests.

Demethylation studies of SOSTDC1
DU145 cells were cultured in 2 µmol/L 5-Aza-2′-deoxycytidine (Sigma) or vehicle (DMSO) control for 96 hours with media changes every 24 hours. RNA was isolated using TRIzol reagent (Invitrogen), and a Micro-to-Midi total RNA purification system (Invitrogen). Genomic DNA was isolated using TRIzol and Gentra Puregene reagent (Qiagen).

DNA methylation assay
DNA samples were modified in preparation for sequencing as described previously (13). Amplified PCR products were subcloned using the TOPO TA Cloning Kit (Invitrogen) and approximately 20 individual colonies for each sample picked. Plasmid DNA was directly amplified (Templiphi amplification kit; GE Healthcare) and sequenced using BigDye Terminator v1.1 Cycle Sequencing Kits (Applied Biosystems). Data were compared with the UCSC genome reference sequence to assess the methylation status of each CpG site (Biq Analyzer software). Clones with a minimum of 95% bisulfite conversion rate were included in subsequent analyses.

Published methylation data and analysis
DNA methylation data from 92 primary prostate cancer samples and 86 adjacent normal prostate tissues were downloaded from Gene Expression Omnibus (GSE26126; ref. 14) and analyzed using the Bioconductor lumi package as described (15). The b (methylation) value, a continuous variable between 0 and 1 (with b values approaching 1 indicating complete methylation and 0 indicating no methylation), was calculated as described (16). Association between phenotype and DNA methylation was assessed using a generalized linear model and PROC GENMOD or PROC LIFETEST in SAS software (SAS Institute Inc; ref. 15).

Luciferase reporter assays
DU145 cells were transfected with 0.1 µg TCF/LEF firefly luciferase (Qiagen) or hepcidin luciferase construct (17) and constitutively active Renilla luciferase. Twenty-four hours post-transfection, cells were treated with 20 mmol/L lithium chloride (Calbiochem), 50 µmol/L endo-IWR (R&D Systems), 50 ng/mL Wnt3a (R&D Systems), or 100 ng/mL SOSTDC1/USAG1 (R&D Systems). Luciferase activity was measured using the Dual-Luciferase Assay System (Promega).

IHC
IHC analysis was performed on formalin-fixed, paraffin-embedded sections using a mouse monoclonal anti-human hepcidin antibody (19D12 Amgen) or anti-SOSTDC1 rabbit
antiserum (18). Additional details are provided in Supplementary Methods.

Results

Hepcidin is expressed and regulates ferroportin in prostate cells

We first tested whether hepcidin was expressed in a representative selection of cultured prostate cancer cells as well as nonmalignant PECs. We examined cancer cells whose proliferation is insensitive (DU145, PC3) and sensitive (LNCaP) to androgen. Hepcidin was secreted by prostate cells and was markedly elevated in all prostate cancer cells relative to benign prostate cells (Fig. 1A). Hepcidin transcripts were similarly elevated in prostate cancer cells (Supplementary Fig. S1A). Amounts of hepcidin secreted by DU145 cells were comparable with amounts secreted by HepG2 cells (a cell line frequently used to model hepatocyte secretion of hepcidin): 66 ± 2 pg/mL/10^6 cells/24 hours cells in HepG2 cells versus 59 ± 8 pg/mL/10^6 cells/24 hours in DU145 cells.

Hepcidin increases intracellular iron by binding to and triggering the degradation of the iron efflux pump, ferroportin (2). We tested whether this pathway was conserved in prostate cells. As shown in Fig. 1B, the increase in hepcidin in prostate cancer cells was associated with a decrease in ferroportin in these cells when compared with nonmalignant prostate cells. Furthermore, the addition of recombinant hepcidin to nonmalignant PECs expressing high ferroportin substantially reduced ferroportin (Fig. 1C and D), and increased intracellular iron (Fig. 1E). To directly assess whether hepcidin secreted by prostate cells functions in an autocrine fashion to regulate ferroportin, we treated prostate cancer cells with anti-hepcidin antibody. As shown in Fig. 1F, antibody-mediated blockade of hepcidin increased ferroportin. Thus, prostate cells synthesize functional hepcidin and its target ferroportin, and the ferroportin/hepcidin regulatory axis is a functional autocrine pathway in prostate cells.

Hepcidin expression is increased in human prostate cancer samples

To assess whether hepcidin was similarly increased in prostate tissue from patients with cancer, we queried a database of gene expression in tissue isolated from human subjects (19). Hepcidin expression was observed in normal prostate, and was significantly upregulated in prostate cancer (Fig. 2A). Hepcidin was further upregulated in metastatic disease (Fig. 2A). Ferroportin, the target of hepcidin, was downregulated in prostate cancer, and further downregulated in metastatic prostate cancer (Fig. 2A). Next, we
Hepcidin in Prostate Cancer

Figure 2.
Hepcidin is upregulated and ferroportin is downregulated in prostate cancer patient samples. A, transcript levels of ferroportin and hepcidin in normal prostate (N, green, n = 29), primary tumor (T, blue, n = 131), and metastatic tumor (M, pink, n = 131). Data from ref. 19. B, IHC of hepcidin in prostate tissue. Top, prostate cancer (Gleason score 3+5 = 8). Middle, benign prostatic glands and stroma. Bottom, control IgG staining. CaP, prostate cancer; NP, normal prostate glands. C, labile iron pool in normal PEC and DU145 prostate cancer cells. D, MTS assay of DU145 using 3 μg/mL and IgG control; middle, benign prostatic glands and stroma. Bottom, control IgG treated with either IgG control or anti-hepcidin antibody. E, clonogenic assay of DU145 using 3 μg/mL anti-hepcidin antibody from Amgen (#1) or Abcam (#2). Mean and SD of triplicate determinations; data are representative of one of three independent experiments. P values reported in D represent differences between anti-hepcidin-treated (1 μg/mL and 3 μg/mL) and IgG control; difference between untreated and IgG control was not significant (P > 0.05).

used IHC to examine hepcidin levels in prostate tissue containing malignant as well as benign glands. As shown in Fig. 2B and Supplementary Fig. S2, hepcidin immunoreactivity was observed in malignant glands, localized along the cell membranes with accentuation towards the glandular lumina. Faint cytoplasmic staining was also noted. Stromal cells were negative for hepcidin. Thus, PECs and not adjacent stroma are the major source of hepcidin in prostate cancer.

Hepcidin secretion controls labile iron and affects survival of prostate cancer cells
We next assessed the consequences of endogenous hepcidin synthesis in prostate cancer cells. Because hepcidin reduces iron export by triggering the degradation of ferroportin, the increase in hepcidin observed in prostate cancer cells should be associated with an increase in metabolically available iron (the labile iron pool, LIP). As shown in Fig. 2C, DU145 prostate cancer cells do indeed exhibit a larger labile iron pool than benign prostate cells. We tested whether the hepcidin-mediated increase in labile iron promotes cell survival by incubating cells with anti-hepcidin antibody. To avoid confounding effects of exogenous iron, these experiments were performed in serum-starved cells. As seen in Fig. 2D, blockade of hepcidin reduced viability of prostate cancer cells. We confirmed this result by performing a clonogenic assay on cells treated with two different anti-hepcidin antibodies compared with cells treated with control IgG. As seen in Fig. 2E, treatment with anti-hepcidin antibodies resulted in a statistically significant decrease in cell number. Consistent with these results, treatment with deferoxamine (DFO), an iron chelator, also reduced prostate cancer cell viability (Supplementary Fig. S3). Thus, elevated hepcidin contributes to prostate cancer cell survival.

IL6 and BMP4/7 regulate hepcidin synthesis in prostate cells through an autocrine loop
We next focused on mechanisms that regulate hepcidin synthesis in prostate cells. We first examined pathways known to regulate hepcidin in hepatocytes: IL6 and BMPs. We treated DU145 prostate cancer cells with IL6, an inflammatory cytokine known to be upregulated in prostate cancer (20). IL6 increased hepcidin transcripts (Supplementary Fig. S1B), phosphorylation of STAT3 (Fig. 3A), and secretion of hepcidin (Fig. 3B), suggesting that IL6 triggers hepcidin synthesis through STAT3. To test whether IL6 induces hepcidin through...
Cancer Res; 75(11) June 1, 2015

Cancer Research

hepcidin secretion, indicating that endogenous synthesis of antibody. As shown in Fig. 3C, anti-IL6 antibody reduced an autocrine loop, we incubated DU145 cells with anti-IL6 antibody. Because BMPs 2, 4, and 7 were all functional in triggering SMAD signaling in prostate cells (Supplementary Fig. S4), we tested whether SOSTDC1 would diminish hepcidin synthesis. As shown in Fig. 3E, depletion of BMP7 induced hepcidin secretion in DU145 cells treated with 100 or 200 ng/mL BMP4, BMP6, or BMP7. E, extracellular hepcidin in DU145 cells treated with 3 μg/mL anti-BMP4, anti-BMP6, anti-BMP7, anti-IL6 antibody, or IgG control antibody. Mean and SD of triplicate determinations; data are representative of one of three independent experiments.

Figure 3.

Hepcidin synthesis in prostate cells is controlled by the BMP antagonist SOSTDC1

BMP antagonists are a major mechanism through which the activity of BMPs is regulated (21). In particular, the BMP antagonist Sclerostin domain containing 1 protein (SOSTDC1) directly binds to and inhibits the activity of BMPs 2, 4, and 7 (22, 23). Because SOSTDC1 is downregulated in cancer (18, 24–26), we tested whether downregulation of this antagonist contributed to the increased hepcidin expression seen in prostate cancer cells. We first verified that SOSTDC1 attenuates BMP4/7 signaling in prostate cancer cells by treating cells with either BMP4 or BMP7 in the presence or absence of recombinant SOSTDC1 and assessing SMAD phosphorylation. As shown in Fig. 4A, SOSTDC1 attenuates BMP4/7-mediated SMAD phosphorylation in these cells. We then tested whether SOSTDC1 would diminish hepcidin synthesis. As shown in Fig. 4C, treatment of cells with recombinant SOSTDC1 reduced hepcidin secretion 3- to 5-fold, as well as reducing hepcidin transcripts (Supplementary Fig. S1E).

Hepcidin is regulated by Wnt signaling in prostate cells

An unusual feature of SOSTDC1 is its ability to interfere with canonical Wnt signaling as well as block BMP signaling (27). The potent effect of SOSTDC1 on hepcidin synthesis led us to query whether SOSTDC1 exerted its inhibitory effect on hepcidin synthesis by simultaneously targeting both BMP and Wnt pathways. We first tested the involvement of the Wnt pathway in hepcidin...
In the canonical pathway, Wnt ligands prevent the IWR-mediated inhibition of luciferase activity was blocked in cells cotreated with IWR and LiCl or Wnt3a (Fig. 4D). Interestingly, a similar effect was not observed in HepG2 hepatocellular carcinoma cells (data not shown), suggesting that Wnt-mediated hepcidin induction may be tissue restricted. Furthermore, combining SOSTDC1 and anti-IL6 antibody to simultaneously inhibit Wnt, BMP4/7, and IL6 signaling almost completely prevented hepcidin synthesis (Fig. 4E), suggesting that in conjunction, these pathways drive most or all of hepcidin synthesis in prostate cancer cells.

SOSTDC1 expression is suppressed by promoter methylation in prostate cancer cells

We asked whether the increase in hepcidin in prostate cancer could be related to decreased levels of SOSTDC1. We first used qRT-PCR to measure SOSTDC1 expression in prostate cells. As shown in Fig. 5A and B, SOSTDC1 mRNA and secretion was dramatically suppressed in DU145 prostate cancer cells when treated as in C. Inset is a cartoon of the location of BMP and STAT3 (44) sites and a candidate TCF/LEF site in the human hepcidin promoter. E, hepcidin secretion in DU145 cells treated with 1 μg/mL anti-IL6 antibody, 1 μg/mL control IgG, 100 ng/mL recombinant SOSTDC1, or the combination of anti-IL6 and SOSTDC1 for 24 hours. Mean and SD of triplicate determinations; data are representative of one of three independent experiments.

Figure 4.

SOSTDC1 antagonizes BMP and Wnt-mediated induction of hepcidin.

A, phosphorylation of Smad-1-5-8 in DU145 cells treated with BMP4 or BMP7 in the presence or absence of SOSTDC1 for 24 hours. B, extracellular hepcidin in DU145 cells treated with 50 or 100 ng/mL SOSTDC1 for 24 hours. C, hepcidin transcript levels in DU145 cells treated with 20 mmol/L LiCl, 20 mmol/L LiCl plus 100 ng/mL SOSTDC1, 50 ng/mL Wnt3a, 50 ng/mL Wnt3a plus 100 ng/mL SOSTDC1, or 50 μmol/L endo-IWR for 24 hours. D, hepcidin promoter-driven luciferase activity in DU145 cells treated as in C. Inset is a cartoon of the location of BMP and STAT3 (44) sites and a candidate TCF/LEF site in the human hepcidin promoter.

Figure 5.

Dramatic suppression of SOSTDC1 and hepcidin in DU145 prostate cancer cells treated with IWR and LiCl or Wnt3a (Fig. 4D). Interestingly, a similar effect was not observed in HepG2 hepatocellular carcinoma cells (data not shown), suggesting that Wnt-mediated hepcidin induction may be tissue restricted. Furthermore, combining SOSTDC1 and anti-IL6 antibody to simultaneously inhibit Wnt, BMP4/7, and IL6 signaling almost completely prevented hepcidin synthesis (Fig. 4E), suggesting that in conjunction, these pathways drive most or all of hepcidin synthesis in prostate cancer cells.
prostate cancer cells. Treatment with 5-aza-dC demethylated this region, and dramatically increased expression of SOSTDC1 (Fig. 5D).

Methylation of SOSTDC1 in prostate tumors is associated with increased probability of cancer recurrence

To test whether the increased methylation of SOSTDC1 that we observed in prostate cancer cells was also observed in prostate tumors, we queried a publicly available database of DNA methylation profiles from prostate tumors and adjacent prostate tissue (14). This database also contained information on time to prostate cancer recurrence, where recurrence was scored by measuring prostate-specific antigen (PSA), a biochemical marker of prostate cancer. As shown in Fig. 6A, the SOSTDC1 promoter was more extensively methylated in prostate tumors than in normal prostate. As predicted from this result, IHC revealed that SOSTDC1 expression was reduced in prostate cancer in comparison with benign prostatic glands in the same patient sample. The reduction was particularly noticeable in areas of high grade (Fig. 6B and Supplementary Fig. S7).

To determine the prognostic impact of SOSTDC1 methylation, we assessed the association of SOSTDC1 methylation with biochemical recurrence of prostate cancer. As shown in Fig. 6C, methylation of SOSTDC1 was associated with increased risk of prostate cancer recurrence. A model of hepcidin regulation in prostate cancer is shown in Fig. 7.

Discussion

Our data demonstrate that normal prostate cells synthesize hepcidin, and that hepcidin synthesis is markedly upregulated in prostate cancer cells (Fig. 1) and tissue (Fig. 2). Hepcidin acts in an autocrine fashion and exerts important effects on both normal and malignant prostate cells. It reduces levels of the iron efflux pump, ferroportin (Fig. 1), increases metabolically available iron (Figs. 1 and 2), and promotes survival (Fig. 2). Because prostate cells represent not only a source, but also a local target of hepcidin activity (Fig. 1), this autocrine regulatory axis may contribute to normal prostate biology. In addition, although hepcidin has primarily been studied for its role in regulation of systemic iron uptake and recycling, these results demonstrate that local synthesis of hepcidin by peripheral tissues also have important effects.

We observed that hepcidin was elevated in metastatic as compared with localized prostate cancer (Fig. 2A). Metastatic prostate
cancer eventually evolves into disease that no longer responds to androgen deprivation therapy. Although we did not study the regulation of hepcidin by androgen, we found that hepcidin synthesis was elevated in both androgen receptor positive and androgen receptor-negative cell lines (Fig. 1), suggesting that hepcidin may not be a direct target of androgen signaling. Thus, elevated levels of prostatic hepcidin may persist despite androgen deprivation therapy, possibly contributing to prostate cancer progression by enhancing prostate cancer cell survival (Fig. 2E and D). Future studies will be required to directly test this hypothesis.

The regulation of hepcidin synthesis in prostate cancer exhibits several distinctive features. First, it utilizes different BMPs than are used to control systemic hepcidin synthesis in the liver, with BMP4/7 rather than BMP6 exhibiting a prominent role (Fig. 3). BMPs and their receptors are expressed in normal prostate tissue as well as in prostate cancer (31, 32), and both BMP6 (33) and BMP7 (34) are elevated in prostate cancer. Because BMP6 and BMP7 activated SMAD signaling in prostate cells (Supplementary Fig. S5), defects in signaling are unlikely to account for the difference in hepcidin response to these BMPs.

A second unanticipated feature of hepcidin regulation in the prostate is the involvement of Wnt signaling (Fig. 4), which has not previously been implicated in hepcidin regulation. Transfection of prostate cancer cells with a luciferase reporter gene driven by 2.7 kb of the hepcidin promoter suggests that hepcidin is a direct downstream target of Wnt (Fig. 4). Constitutive Wnt signaling has been implicated in many cancers, including prostate cancer (35). Thus, aberrant activation of this pathway may increase hepcidin expression in other cancers as well.

The third component of hepcidin regulation in prostate cancer is IL6, which also regulates expression of hepatic hepcidin in response to inflammation. In the prostate, autocrine secretion of IL6 makes a significant contribution to hepcidin secretion (Figs. 3 and 4). IL6 is synthesized by prostate cancer cells (36) and affects their differentiation, therapy resistance, and proliferation (37). Higher levels of IL6 have been associated with tumor burden, bone metastasis, and poor survival of patients with prostate cancer (38). Intriguingly, high levels of circulating hepcidin are also significantly correlated with the presence of metastases in patients with prostate cancer (39). Thus upregulation of hepcidin may be one mechanism through which IL6 contributes to prostate cancer progression.

A fourth and new member of the regulatory network controlling hepcidin synthesis in prostate cancer is SOSTDC1, a BMP antagonist notable for its ability to antagonize Wnt as well as BMP signaling (40). BMP antagonists are secreted proteins that control BMP activity by binding directly to BMPs and preventing them from productively engaging their receptors (21). SOSTDC1 antagonizes BMPs 2, 4, and 7; downregulation of SOSTDC1 has been...
In addition to hepcidin and ferroportin, other proteins contribute to maintenance of intracellular iron, including ferritin, which stores intracellular iron, TfR1, which is involved in iron import, STEAP family proteins, which are involved in intracellular iron trafficking, and the iron regulatory proteins IRP1 and IRP2, among others (41). Ultimately, the contribution of these will need to be evaluated to create a comprehensive picture of iron metabolism in prostate cancer.

Our work suggests that hepcidin itself, and/or the pathways that regulate its synthesis, may be a potential therapeutic target or biomarker of prostate cancer progression (39). The discovery of the ferroportin/hepcidin regulatory axis has not only increased fundamental understanding of mechanisms involved in maintenance of iron balance, but also has engendered a vigorous search for pharmacologic agents that can target this axis (5). Hepcidin has been a particularly attractive target, and drugs that can increase or mimic hepcidin as well as drugs that can downregulate hepcidin are both under active investigation as potential therapies (5, 42, 43). Notably, inhibition of hepcidin significantly inhibited prostate cancer cell survival (Fig. 2), suggesting that agents that inhibit hepcidin might find additional application as modulators of tumor growth. Furthermore, because prostate cancer cells exhibit a mechanism of hepcidin regulation that is distinct from that regulating systemic hepcidin, it may be possible to differentially inhibit these two pathways. In particular, it may be fruitful to explore whether perturbation of SOSTDC1, a critical link between iron metabolism and prostate cancer, may be used in attaining such selective intervention.

Disclosure of Potential Conflicts of Interest

J.L. Babitt and H.Y. Lin have ownership interest (including patents) in Ferrumax Pharmaceuticals, Inc. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Development of methodology: L. Tesfay, J.W. Kim, T. Arvedson

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J.W. Kim, P. Hegde, L.D. Miller, Z. Deng, J.L. Babitt

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): L. Tesfay, L.D. Miller, N. Blanchette

Writing, review, and/or revision of the manuscript: L. Tesfay, J.W. Kim, N. Blanchette, T. Arvedson, C.K. Miranti, J.L. Babitt, H.Y. Lin, D.M. Peehl, F.M. Torti, S.V. Torti

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): X. Wang, C.K. Miranti

Study supervision: F.M. Torti, S.V. Torti

Acknowledgments

The authors thank Drs. Nathaniel Dyment and David Rowe for assistance in image acquisition, and current and previous members of the Torti laboratory for input and constructive discussions.

Grant Support

F.M. Torti and S.V. Torti were supported in part by NIH R01 CA-171101 and R01 CA188025. H.Y. Lin was supported by NIH grants R01 DK-069533 and R01 DK-071837. J.L. Babitt was supported in part by NIH grant R01-DK087727 and a Howard Goodman Fellowship Award from the Massachusetts General Hospital.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 20, 2014; revised December 29, 2014; accepted February 19, 2015; published OnlineFirst April 9, 2015.
References

