REVIEWS

2405 The Role of TLR4 in Chemotherapy-Driven Metastasis
Sophia Ran

2411 Ex Vivo Culture of CTCs: An Emerging Resource to Guide Cancer Therapy
Shyamala Maheswaran and Daniel A. Haber

INTEGRATED SYSTEMS AND TECHNOLOGIES

2416 Early Prediction of Disease Progression in Small Cell Lung Cancer: Toward Model-Based Personalized Medicine in Oncology
Núria Buil-Bruna, Tarjinder Sahota, José-Maria López-Picazo, Marta Moreno-Jiménez, Salvador Martín-Algarra, Benjamin Ribba, and Iñaki F. Trocóniz

2426 Cell–Cell Adhesion and Cytoskeleton Tension Oppose Each Other in Regulating Tumor Cell Aggregation
Laure Saia, Aurélie Gomes, Martine Cazales, Bernard Ducommun, and Valérie Lobjois

MICROENVIRONMENT AND IMMUNOLOGY

2434 IL13 Receptor α2 Signaling Requires a Scaffold Protein, FAM120A, to Activate the FAK and PI3K Pathways in Colon Cancer Metastasis
Rubén A. Bartolomé, Irene García-Palmero, Sofía Torres, María López-Lucendo, Irina V. Baßyannikova, and J. Ignacio Casal

2445 Endothelial ALK1 Is a Therapeutic Target to Block Metastatic Dissemination of Breast Cancer
Sara I. Cunha, Matteo Bocci, John Lövrot, Nikolas Eleftheriou, Perilla Roswall, Eugenia Cordero, Linda Lindström, Michael Bartoschek, B. Kristian Haller, R. Scott Pearsall, Aaron W. Mulivor, Ravindra Kumar, Christo Larsson, Jonas Beigh, and Kristian Pietras

Preís: These findings offer preclinical proof of concept for the utility of ALK1 inhibitors to treat metastatic breast cancer, with immediate implications for evaluation of this strategy in the clinic.

2457 Novel Associations between Common Breast Cancer Susceptibility Variants and Risk-Predicting Mammographic Density Measures

Preís: These findings deepen the evidence of shared genetic determinants between breast cancer risk and mammographic density measures, strengthening the likelihood of common etiologic pathways.

Endothelial ALK1 Is a Therapeutic Target to Block Metastatic Dissemination of Breast Cancer
Sara I. Cunha, Matteo Bocci, John Lövrot, Nikolas Eleftheriou, Perilla Roswall, Eugenia Cordero, Linda Lindström, Michael Bartoschek, B. Kristian Haller, R. Scott Pearsall, Aaron W. Mulivor, Ravindra Kumar, Christo Larsson, Jonas Beigh, and Kristian Pietras

Preís: These findings offer preclinical proof of concept for the utility of ALK1 inhibitors to treat metastatic breast cancer, with immediate implications for evaluation of this strategy in the clinic.

Preís: These findings deepen the evidence of shared genetic determinants between breast cancer risk and mammographic density measures, strengthening the likelihood of common etiologic pathways.

Endothelial ALK1 Is a Therapeutic Target to Block Metastatic Dissemination of Breast Cancer
Sara I. Cunha, Matteo Bocci, John Lövrot, Nikolas Eleftheriou, Perilla Roswall, Eugenia Cordero, Linda Lindström, Michael Bartoschek, B. Kristian Haller, R. Scott Pearsall, Aaron W. Mulivor, Ravindra Kumar, Christo Larsson, Jonas Beigh, and Kristian Pietras

Preís: These findings offer preclinical proof of concept for the utility of ALK1 inhibitors to treat metastatic breast cancer, with immediate implications for evaluation of this strategy in the clinic.

Preís: These findings deepen the evidence of shared genetic determinants between breast cancer risk and mammographic density measures, strengthening the likelihood of common etiologic pathways.

Preís: These epidemiologic results indicate that the incidence of HPV-positive oropharyngeal cancer is higher and rising more sharply among men than women in the United States because of gender-associated sexual behaviors.
Table of Contents

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2478</td>
<td>Targeting Mitochondria with Avocatin B Induces Selective Leukemia Cell Death</td>
<td>Eric A. Lee, Leonard Angka, Sarah-Grace Rota, Thomas Hanlon, Andrew Mitchell, Rose Hurren, Xiao Ming Wang, Marcela Gronda, Ezel Boyaci, Barbara Bojko, Mark Minden, Shirvani Sriskanthadevan, Alessandro Datti, Jeffery L. Wran, Andrea Edginton, Janusz Pawlisyn, Jamie W. Joseph, Joe Quadrilatero, Aaron D. Schimmer, and Paul A. Spagnuolo</td>
</tr>
<tr>
<td></td>
<td>Précis: A natural product derived from avocado fruit can selectively eradicate leukemia cells based on a specific difference in mitochondrial function.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Précis: These results offer early insight into how acquired resistance arises to a new mutation-selective inhibitor of EGFR that is in fast-track clinical development, illustrating the inescapable cat-and-mouse chase in the evolution of cancer cell–targeting drugs in the management of cancer patients.</td>
<td></td>
</tr>
<tr>
<td>2501</td>
<td>Breast Cancer Detection by B7-H3-Targeted Ultrasound Molecular Imaging</td>
<td>Sumitha V. Bachawal, Kristin C. Jensen, Katheryne E. Wilson, Lu Tian, Amelie M. Lutz, and Jürgen K. Willmann</td>
</tr>
<tr>
<td></td>
<td>Précis: The immunoregulator B7-H3 is differentially expressed on vascular endothelial cells of breast cancer compared with normal or benign breast pathologies, and this study offers a preclinical proof of concept for the use of B7-H3-targeted ultrasound molecular imaging to improve the diagnostic accuracy of breast cancer detection in patients.</td>
<td></td>
</tr>
<tr>
<td>2520</td>
<td>Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites</td>
<td>Qilong Wang, Yi Ren, Jingyao Mu, Nejat K. Egilmez, Xiaoyin Zhuang, Zhongbin Deng, Lifeng Zhang, Jun Yan, Donald Miller, and Huang-Ge Zhang</td>
</tr>
<tr>
<td></td>
<td>Précis: This interesting report defines and characterizes the tumor-targeting features of a readily available, generalizable, and nontoxic vehicle to improve the targeted delivery of therapeutic drugs to cancerous or precancerous sites, possibly offering a low-cost clinical formulation strategy to widen the therapeutic window for many drugs.</td>
<td></td>
</tr>
</tbody>
</table>

TUMOR AND STEM CELL BIOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Précis: This work uncovers new aspects of grade-dependent metabolic reprogramming in renal cancers that could lead to novel personalized treatments, including the use of inhibitors of glucose, glutamine, and tryptophan metabolism that are being developed in other clinical settings.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Précis: These results show how cancer stem-like properties are controlled in oral squamous cancers, and how this control system may promote drug resistance and tumor relapse in advanced cancers.</td>
<td></td>
</tr>
</tbody>
</table>
G-CSF Promotes Neuroblastoma Tumorigenicity and Metastasis via STAT3-Dependent Cancer Stem Cell Activation
Saurabh Agarwal, Anna Lakoma, Zaowen Chen, John Hicks, Leonid S. Metelitsa, Eugene S. Kim, and Jason M. Shohet

Précis: This seminal study challenges the clinical use of G-CSF as a treatment to support white blood cell counts in children with neuroblastoma, based on the ability of this factor to promote the growth of the cancer stem-like cell population in this setting.

CORRECTIONS

2580 Correction: Identification of Pax5 as a Target of MTA1 in B-cell Lymphomas

2582 Correction: Metastasis-Associated Protein 1 Transgenic Mice: A New Model of Spontaneous B-cell Lymphomas
Cancer Research

75 (12)

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/75/12

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.