G-CSF Promotes Neuroblastoma Tumorigenicity and Metastasis via STAT3-Dependent Cancer Stem Cell Activation

Saurabh Agarwal1,2, Anna Lakoma3, Zaowen Chen1,2, John Hicks4, Leonid S. Metelitsa1,2, Eugene S. Kim3,5, and Jason M. Shohet1,2

Abstract

Increasing evidence suggests that inflammatory cytokines play a critical role in tumor initiation and progression. A cancer stem cell (CSC)-like subpopulation in neuroblastoma is known to be marked by expression of the G-CSF receptor (G-CSFR). Here, we report on the mechanistic contributions of the G-CSFR in neuroblastoma CSCs. Specifically, we demonstrate that the receptor ligand G-CSF selectively activates STAT3 within neuroblastoma CSC subpopulations, promoting their expansion in vitro and in vivo. Exogenous G-CSF enhances tumor growth and metastasis in human xenograft and murine neuroblastoma tumor models. In response to G-CSF, STAT3 acts in a feed-forward loop to transcriptionally activate the G-CSFR and sustain neuroblastoma CSCs. Blockade of this G-CSF–STAT3 signaling loop with either anti-G-CSF antibody or STAT3 inhibitor depleted the CSC subpopulation within tumors, driving correlated tumor growth inhibition, decreased metastasis, and increased chemosensitivity. Taken together, our results define G-CSF as a CSC-activating factor in neuroblastoma, suggest a comprehensive reevaluation of the clinical use of G-CSF in these patients to support white blood cell counts, and suggest that direct targeting of the G-CSF–STAT3 signaling represents a novel therapeutic approach for neuroblastoma.

Cancer Res; 75(12); 2566–79. ©2015 AACR.

Introduction

Neuroblastoma accounts for 15% of all pediatric cancer-related mortality and remains a major clinical challenge. Curative therapy requires intensive chemotherapy, radiation, surgery, and biologic therapies, yet yields less than 50% success rate and imparts severe long-term side effects (1, 2). Neuroblastoma arises from the early embryonic neural crest, as this transient neural ectodermal population matures and undergoes a programmed ectoderm-to-mesodermal transition (EMT) to obtain their migratory mesenchymal-like phenotype (3). This process is, in part, controlled by STAT3 activation downstream of fibroblast growth factors (FGF), BMPs, and other neural crest specification factors (4, 5). Pro-oncogenic targets of STAT3 include genes involved in metastasis (MMP-2, MMP-9, vimentin), angiogenesis (VEGF-A), and inflammation (IL10, TGFβ, COX-2; ref. 6). The proinflammatory cytokines IL6 and G-CSF activate STAT3 through phosphorylation via their respective cognate surface receptors. G-CSF is known to promote neuronal stem cell survival (7, 8). Accumulating evidence of similar downstream activation of STAT3 links inflammatory signals to tumor progression and spread (9, 10).

We previously defined the ‘stemness’ of a neuroblastoma subpopulation isolated from primary tissues, xenografts, and cell lines, based on expression of the G-CSF receptor (G-CSFR, CD114; ref. 11). Understanding the biological effects of downstream signaling via this receptor on neuroblastoma tumorigenesis and metastasis is a critical question with important clinical implications due to the adjuvant role that ligand G-CSF serves in limiting chemotherapy-induced neutropenia in neuroblastoma patients. We therefore sought to comprehensively analyze the effects of G-CSF on neuroblastoma cancer stem cells (CSC) and how this alters overall tumor growth and metastasis. We also hypothesized that blocking the G-CSF–STAT3 signaling pathway can reduce the neuroblastoma CSCs’ effects and inhibit neuroblastoma tumorigenicity and metastasis.

Here, we demonstrate that G-CSF specifically activates STAT3 signaling in the receptor-positive CSC-like neuroblastoma subpopulation. G-CSF–STAT3 signaling promotes neuroblastoma colony formation, proliferation, tumor formation, and metastasis in both xenograft and allograft murine models of neuroblastoma. In contrast to the bulk CD114+ tumor population, the G-CSF–positive (CD114+) cells are remarkably sensitive to STAT3

1Department of Pediatrics, Section of Hematology-Oncology, Texas Children’s Cancer Center, Houston, Texas. 2Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas. 3Division of Pediatric Surgery, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California. 4Department of Pathology, Section of Pediatric Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas. 5Division of Pediatric Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California.

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

E.S. Kim and J.M. Shohet share senior authorship of this article.

This work is dedicated to all the children and parents struggling with neuroblastoma who inspire us to search for a cure.

Corresponding Author: Jason M Shohet, Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, 1102 Bates Street Suite 750.01, Houston, TX 77030. Phone: 832-824-4233; Fax: 832-824-1206; E-mail: jmshohet@txch.org

doi: 10.1158/0008-5472.CAN-14-2946

©2015 American Association for Cancer Research.
inhibition. Blocking the G-CSF–STAT3 signaling axis either by anti-G-CSF antibody or by STAT3 inhibition reverses the protumorigenic effects of G-CSF and leads to tumor growth inhibition, decreased metastasis, and increased chemosensitivity. These effects strongly correlate with changes in the percentage of CD114+ subpopulation within the human or murine tumor grafts.

Our findings demonstrate that G-CSF acts as a CSC-specific growth factor for high-risk neuroblastoma. On the basis of these data, we propose a new therapeutic paradigm incorporating anti-G-CSF–STAT3 targeting for neuroblastoma CSCs combined with standard cytotoxic therapy to block neuroblastoma tumor growth, spread, and relapse. Our data also strongly advocate a reevaluation of the clinical utility of G-CSF as growth factor for neutrophil support in neuroblastoma patients.

Materials and Methods

Cell culture and reagents

Human neuroblastoma cell lines (NGP, SH-SY5Y, IMR-32, and CHLA-255) and mouse neuroblastoma cell line, NB975, were routinely maintained and cultured as described previously (11). For the in vitro assays performed in this study, cells were cultured routinely and then partially starved for at least 16 to 24 hours by culturing in medium supplemented with 1% FBS unless otherwise stated, before treating with drugs or cytokine. Primary antibodies anti-CD114-PE (554538), anti-CD56-APC (555518), anti-CD24-FITC (553261), and fluorochrome, isotype-matching mAbs for negative controls were purchased from BD Biosciences. DAPI (4’,6-diamidino-2-phenylindole; Invitrogen; D3571) staining was used to exclude dead cells in all flow cytometry analysis. LSRII 5-laser flow cytometer (BD Biosciences) was used to perform flow cytometry experiments followed by analysis using the Flowjo vX.0.7 (TreeStar). All flow cytometry assays were performed with antibody isotype controls. Static (S7947), etoposide (S7947), and DAPI (S7947) staining was used to exclude dead cells in all flow cytometry analysis.

Cell line validation and sources

NGP, IMR-32, and SH-SY5Y were obtained from the ATCC. CHLA-255 and the mouse neuroblastoma cell line NB975 were obtained from Dr. Metelitsa (Baylor College of Medicine, Houston, TX). All cell lines are validated for MYCN and CD56 expression and have been validated by genotyping within the past 12 months. All cell lines used in this article were routinely tested for Mycoplasma on a monthly basis.

Mice

Four- to 6-week-old female inbred athymic immunodeficient nude mice (Nu/Nu) were purchased from Taconic Biosciences on a monthly basis. All cell lines used in this article were routinely tested for Mycoplasma on a monthly basis.

Cell viability and soft agar assay

Cell viability assay was performed using the CellTiter 96 AQueous One Solution Cell Proliferation Assay (G3582; Promega) according to the manufacturer's instructions. Briefly, 5,000 cells per well were plated into 96-well plate in 1% FBS supplemented medium and treated with indicated drugs for 24 hours followed by incubation with dye for 4 hours. The plates were analyzed by spectrophotometric absorbance at 490 nm using a microplate reader (DTX-800; Beckman Coulter) with Softmax Pro v6.2.2 software (Molecular Devices). The data were analyzed and IC50 were calculated using GraphPad Prism 6 (GraphPad Software).
Base). Chromatin immunoprecipitation (ChIP) was performed on 0.5 reporter lentiviral plasmids were packaged and NGP cells were incubated for 15 days. Colonies were stained with thiazolyl blue tetrazolium bromide (M5655; Sigma-Aldrich) and visualized and counted using Versadoc (Bio-Rad; Quantity I software). All assays were performed in triplicates and repeated twice with proper controls.

Apoptosis assay
Apoptosis in neuroblastoma cell lines was analyzed using APC Annexin V Apoptosis Detection Kit (88-8007; eBiosciences) according to the manufacturer’s instructions. Brieﬂy, cells were partially starved and treated with indicated doses of drugs for 2 hours followed by washing with cold PBS and stained with anti-CD114 antibody. Cells were then washed with cold PBS and resuspended in binding buffer followed by incubation with APC–Annexin V antibody for 15 minutes. Cells were washed and resuspended in binding buffer followed by analysis on LSRII flow cytometer. DAPI was used for analyzing dead and late apoptotic cells.

Chromatin immunoprecipitation
STAT3-binding sites on CSF3R 5’-untranslated region (5’-UTR) were analyzed by UCSC genome browser (www.genome.ucsc.edu) and conﬁrmed by TransFac analysis (BioBase). Chromatin immunoprecipitation (ChIP) was performed on 0.5 × 10^6 ﬂow-sorted CD114^+ and CD114^− NGP cells using the ChIP-IT High Sensitivity Kit (Active Motif; 53040) according to the manufacturer’s instructions. Samples were sonicated for 20 cycles of 30-second intervals in a BioRuptor UCD-200 sonicator (Diagenode). ChIP-grade anti-STAT3 (9132), anti-pSTAT3 (Y705; 9131; Cell Signaling Technology), and IgG control (12-370; EMD-Millipore) antibodies were used. Input was generated by purifying DNA from the sonicated lysates of each sample.

ChIP-quantitative PCR
Primers were designed for ChIP-quantitative PCR (ChIP-qPCR) using UCSC genome browser and Primer3 software (www.SimGene.com) and are listed in Supplementary Table S3. Real-time PCR reactions were performed as described above using Power SYBR Green PCR master mix. Input and negative control IgG ChIP samples were also analyzed for each sample. The amount of genomic DNA precipitated with speciﬁc antibody was calculated in comparison with the total input DNA used for each immunoprecipitation and fold enrichment above background was calculated by normalizing against control IgG. The qPCR reactions were performed in triplicates for each sample with input and control IgG.

Reporter assay
The CSF3R 5’-UTR and promoter regions were ampliﬁed from genomic DNA isolated from NGP neuroblastoma cell line and cloned upstream of the EGFP gene by replacing existing promoter motifs in the lentiviral STAT3-EGFP reporter plasmid (11). The reporter lentiviral plasmids were packaged and NGP cells were transduced and further reporter assays were performed as described previously (11).

Generation of stable STAT3 knockdown cell lines
Lentiviral shRNA vectors pSH1-puro-STAT3 (26596; Addgene) and pSH1-puro-control (26597; Addgene; ref. 15) were used to transduce neuroblastoma cell lines as described previously (11). Seventy-two hours after transduction, cells were selected by media containing 1 μg/mL puromycin. Stably transduced cell lines were further veriﬁed for knockdown efﬁciencies by Western immunoblotting using STAT3 (4904; Cell Signaling Technology) antibody using protocol as described previously (14).

Statistical analysis
Data values for in vivo experiments are expressed as mean ± SEM and compared using the Mann–Whitney (two-tailed non-parametric analysis) test. The Fisher exact test was used to compare metastatic incidence between groups. The Student t test (two-tailed or one-tailed distribution with unequal variance) was applied to compare the results shown for in vitro experiments unless otherwise stated. Assays were performed in triplicates and repeated.

Results
G-CSF induces colony formation in CD114^+ cells
To assess the differential responses of neuroblastoma subpopulations to G-CSF, we puriﬁed G-CSFR−positive (CD114^−) and receptor-negative (CD114^+) subsets from the neuroblastoma cell lines SH-SY5Y and NGP using ﬂuorescence activated cell sorting (FACS). Cell proliferation and colony formation from single cells were measured with and without G-CSF over 28 days. Treatment with G-CSF growth factor signiﬁcantly increased the cell counts and colony counts generated from CD114^− subpopulation with minimal to no change in colony formation in response to G-CSF in the receptor-negative subpopulation (Fig. 1A and B). We note a difference in dose dependence between the NGP (MYCN-ampliﬁed) and SH-SY5Y (nonampliﬁed) cell lines, possibly due to differences in feedback inhibition or cytokine receptor density (additional data in Supplementary Fig. S1). The NGP response fell off above 10 ng/mL while SH-SY5Y cells continued to respond to higher levels of G-CSF. Cell-cycle analysis with G-CSF treatment demonstrated a signiﬁcant increase in S-phase population within the NGP CD114^+ subset compared with control (Fig. 1C and D). In contrast, no signiﬁcant changes in the cell-cycle phases of the CD114^− subpopulation were observed in response to G-CSF (Fig. 1C and D). These data correlated with increased activation of STAT3 as measured by increased pSTAT3 (Y705) levels in the CD114^− cells. No change in pSTAT3 was observed upon G-CSF treatment of CD114^+ cells (Supplementary Fig. S2A). These in vitro data prompted a more detailed in vivo analysis of G-CSF on neuroblastoma tumor subpopulations, tumor growth, and metastasis.

G-CSF promotes tumorigenicity and metastasis in vivo
We next evaluated the impact of exogenous G-CSF on tumor growth in vivo. One million human neuroblastoma cells (NGP and SH-SY5Y) were xenotransplanted in athymic immunodeﬁcient nude mice via injection under the renal capsule. This
previously well-established orthotopic model of neuroblastoma faithfully recapitulates the highly vascular and aggressive growth and metastatic patterns of human neuroblastoma (11, 12). Cohorts of mice were treated with either G-CSF or vehicle control daily for 21 days, starting the day after tumor cell implantation (Fig. 2A). For these studies, human recombinant G-CSF was administered at doses comparable to previous studies in murine tumor models, which takes into account the rapid metabolism of G-CSF in murine model systems (16, 17). Xenografts derived from the NGP cell line showed significant increase in tumor weights...
Figure 2.
G-CSF promotes neuroblastoma tumorigenicity in vivo. A, schematic representation of experimental plan to analyze the effect of G-CSF on neuroblastoma in vivo. One million neuroblastoma cells were injected under the sub-renal capsule of mouse to develop orthotopic xenografts/allografts by using an orthotopic mouse model. Implanted mouse treated with exogenous G-CSF (i.p. injection, 250 μg/kg/d) or vehicle control (5% dextrose water) starting next day from implantation until day 21, followed by necropsy at day 28. B, NGP xenografts showing significant increase in tumor weights in response to G-CSF treatment compared with controls (P = 0.019), with relative increase in the percentage of CD114⁺ cells in treatment cohorts (P = 0.003). Linear regression analysis showed a direct correlation between individual tumor mass and percentage of CD114⁺ cells (control; G-CSF–treated mice). C, SH-SY5Y xenografts showed a significant increase in tumor weights in response to G-CSF treatment compared with controls (P = 0.038), with relative increase in the percentage of CD114⁺ cells (control; G-CSF–treated mice). Linear regression analysis showed a direct correlation between individual tumor mass and percentage of CD114⁺ cells (control; G-CSF–treated mice). Metastatic incidence analysis showed an increase in G-CSF treatment cohort (P = 0.016; Mann–Whitney test; *, P < 0.05; **, P < 0.01). D, NB975 CSF3⁻/⁻ mice allografted with murine neuroblastoma cell line NB975 showed a significant increase in tumor weights in response to G-CSF treatment compared with controls (P = 0.04) and increased the percentage of CD114⁺ cells (P = 0.03). Linear regression analysis showed a direct correlation between individual tumor mass and percentage of CD114⁺ cells (control; G-CSF–treated mice). G-CSF treatment significantly increased the metastatic incidence (P = 0.016; Mann–Whitney test; *, P < 0.05; **, P < 0.01). E, NGP xenografts treated with anti-G-CSF antibody (i.p. injection, 100 μg/kg/d) showed a significant decrease in tumor mass in contrast to exogenous G-CSF (P = 0.0001) and isotype control antibody treatment (P = 0.04). Treatment plan for all cohorts was followed similar to as shown in A. Tumor flow cytometry analysis showed a significant decrease in total percentage of CD114⁺ cells in anti-G-CSF antibody cohort in contrast to G-CSF (P = 0.001) and control antibody (P = 0.03) cohorts. Metastatic incidence was significantly decreased in anti-G-CSF antibody cohort in comparison with G-CSF treatment (P = 0.04; Mann–Whitney test; *, P < 0.05; **, P < 0.01).
with G-CSF treatment. Notably, G-CSF treatment also increased the percentage of CD114⁺ cells in xenografts by 3-fold in comparison with controls. We also observed a significant direct correlation between tumor mass and percentage of CD114⁺ cells within the tumors (Fig. 2B). Similar results were observed for SH-SY5Y xenografts, where G-CSF treatment substantially increased tumor weight with a corresponding increase in CD114⁺ percentage compared with vehicle-treated controls. Again, we found a highly significant correlation between tumor mass and CD114⁺ percentage (Fig. 2C). Immunohistochemical analysis also showed a significant increase in pSTAT3 (Y705) staining in tumor xenografts treated with G-CSF in comparison with controls (Supplementary Fig. S5).

We next examined the effect of G-CSF on bone marrow metastasis (a common site of neuroblastoma metastasis) by detecting the percentage of CD114⁺/C0 cells in bone marrow of xenotransplanted mice using qPCR. The MYCN oncogene is a well-characterized driver of human MYCN mRNA in bone marrow of xenotransplanted mice (Supplementary Fig. S2B and C). We engrafted a syngeneic murine neuroblastoma tumor cell line, NB975, which is derived from transgenic TH-MYCN neuroblastoma tumors and is previously shown to contain a small CD114⁺/C0 population of cells (Fig. 2B and C).

G-CSF may be produced by both tumor cells and the stromal cells within the tumor microenvironment (19). To evaluate the contribution of stroma-derived G-CSF, we used G-CSF knockout mice (CSF3−/−). We engrafted a syngeneic murine neuroblastoma tumor cell line, NB975, which is derived from transgenic TH-MYCN neuroblastoma tumors and is previously shown to contain a small CD114⁺ subpopulation analogous to human tumors (11). We found that while stromal G-CSF was not required for tumor engraftment, tumor growth and metastasis were markedly enhanced in the presence of exogenous G-CSF (Fig. 2D). Treatment with exogenous G-CSF significantly increased tumor weight with a correlated increase in percentage of G-CSFR⁺-positive cells within these tumors, derived from murine neuroblastoma cells in CSF3−/− mice. Here again, exogenous G-CSF significantly increased metastasis compared with controls (Fig. 2D). These data demonstrate, in both xenogeneic (immunodeficient) and syngeneic murine (immunocompetent) neuroblastoma mouse models, that exogenous G-CSF significantly promotes tumor growth and metastasis. These results are also consistent with our early data defining the increased tumorigenicity and stem cell–like features of CD114⁺ neuroblastoma subpopulations found in primary human biopsy specimens and in all neuroblastoma cell lines and xenografts analyzed to date (11). They also agree with increased downstream pSTAT3 levels in response to G-CSF (Fig. 3D). BrdUrd-based cell-cycle analysis further validated these findings, demonstrating that STAT3 inhibition selectively increased the sub-G0–G1 population (apoptotic cells) and decreased the S-phase percentage within the CD114⁺ subpopulation. STAT3 inhibition also blocks the cell-cycle progression within the CD114⁺ subset at G1–S checkpoint and increases the population of cells in G1-phase (Fig. 3E and F). Intracellular staining of pSTAT3 (Y705) by phospho-flow assay in the NGP neuroblastoma cell line shows that Static reduces the percentage of CD114⁺ cells and levels of pSTAT3 (Y705) in a dose-dependent manner either alone or combined with G-CSF or with anti-G-CSF antibody (Supplementary Fig. S2B and S2C). We also found that anti-G-CSF antibody neutralizes the effects of G-CSF (Supplementary Fig. S2C).

STAT3 inhibition inhibits neuroblastoma tumorigenicity and sensitizes neuroblastoma to chemotherpay

We next evaluated the hypothesis that dual treatment with a genotoxic chemotherapy agent combined with the STAT3 inhibitor would have a combined inhibitory effect on neuroblastoma tumorigenesis by targeting both tumor subpopulations as proposed for other CSC models (21, 22). Addition of the STAT3 inhibitor markedly sensitizes different neuroblastoma cell lines to etoposide (VP-16, a topoisomerase inhibitor used extensively in neuroblastoma treatment regimens) as determined by MTS proliferation assays (Fig. 4A and Supplementary Table S1). We further tested the efficacy of this combination in vivo using orthotopic xenografts of NGP and SH-SY5Y according to the treatment regimen outlined in Fig. 4B. For both cell lines, the STAT3 inhibitor alone significantly reduces tumor burden with an overall decrease in total percentage of CD114⁺ cells and metastatic incidence.

Published OnlineFirst April 23, 2015; DOI: 10.1158/0008-5472.CAN-14-2946
As expected, etoposide alone decreases the tumor burden but does not significantly reduce the CD114⁺ population or metastasis. In fact, genotoxic chemotherapy appears to moderately increase the relative CD114⁺ percentage in the xenografts. This observation is consistent with the enrichment of CD114⁺ subpopulations demonstrated previously in patient biopsies examined before and after intensive chemotherapy and correlates with increased pSTAT3 staining in tumors treated with etoposide (Supplementary Fig. S5; ref. 11). Combination treatment of the STAT3 inhibitor with etoposide further reduced tumor burden, and decreased metastatic incidence compared with etoposide alone or controls, and partially reversed the chemotherapy-induced increase in CD114⁺ percentage in the tumors (Fig. 4C and D). Furthermore, immunohistochemical analysis showed an increase of cleaved caspase-3 (apoptosis marker) staining in tumor xenografts treated with Static and Combo in comparison with controls (Supplementary Fig. S4). These tumor responses correlated with decreased pSTAT3 (Y705) staining in tumor xenografts treated with Static and Combo in comparison with controls or etoposide alone (Supplementary Fig. S5). Taken together, these preclinical in vitro and in vivo data support the
Figure 4.
STAT3 inhibition sensitizes neuroblastoma to chemotherapy. A, cell viability assay of different neuroblastoma cell lines (NGP, SH-SY5Y, IMR-32, and CHLA-255) were tested by the MTS assay in response to etoposide alone and in combination of 0.5 and 1.0 μmol/L Static treatment for 24 hours. Experiments were repeated twice with six replicates for each condition and are represented as mean ± SD. B, schematic representation of experimental plan to analyze the in vivo effect of STAT3 inhibitor and dual treatment strategy on neuroblastoma. An orthotopic mouse model was used to develop xenografts of neuroblastoma NGP and SH-SY5Y cell lines (implanted 1 × 10^6 cells) and treated with either etoposide (12 mg/kg/d, i.p. injection, three times/week) and Static (25 mg/kg/d, i.p. injection, 5 days/week) alone or combined. Implanted mouse were treated 2 weeks after implantation for 2 weeks. Vehicle (DMSO) was used as a control in all experiments. C, NGP xenografts show significant decrease in tumor weights in response to Static treatment (P = 0.03), etoposide treatment, and combo treatment (P = 0.001) in comparison with controls. Combo treatment also significantly reduced tumor burden in comparison with etoposide alone (P = 0.008; Mann-Whitney test; *, P < 0.05; **, P < 0.01; ***, P < 0.001). The percentage of CD114^+ cells determined by flow cytometry analysis on individual tumors is shown as mean ± SEM. Human MYCN mRNA was detected by qPCR in bone marrow of xenotransplanted mice. D, SH-SY5Y xenografts show significant decrease in tumor weights in response to Static treatment (P = 0.02), etoposide treatment (P = 0.0002), and combo treatment (P < 0.0001) in comparison with controls. Combo treatment also significantly reduced tumor burden in comparison with etoposide (P = 0.02) and Static alone (P = 0.0002; Mann-Whitney test; *, P < 0.05; **, P < 0.01; ***, P < 0.001). The percentage of CD114^+ cells determined by flow cytometry analysis on individual tumors is shown as mean ± SEM. Detection of human MYCN mRNA by qPCR in bone marrow of xenotransplanted mice showed a trend of reduction of metastasis with Static (P = ns).
clinical testing of a dual treatment strategy of combining STAT3 inhibition (targeting the G-CSFR–positive CSC-like subpopulation) with standard cytotoxic chemotherapy (targeting the bulk tumor) for high-risk neuroblastoma.

STAT3 responsive genes are differentially regulated by G-CSF in neuroblastoma subpopulations

Transcriptional targets of STAT3 include genes and micro-RNAs controlling stemness and differentiation (6, 23, 24). STAT3 opposes p53-mediated effects on cell cycle, apoptosis, and inflammation through direct and indirect mechanisms (9, 25, 26). To evaluate the STAT3-specific molecular responses downstream of G-CSF signaling in the CD114⁺ subpopulation, we used a low-density qPCR array to profile JAK–STAT3 pathway genes (Fig. 5A). We found that G-CSF treatment strongly modulated 38 STAT3 pathway genes and that STAT3 inhibition reversed this effect (Fig. 5B). Subsequently, the expression pattern of key genes was independently validated by qPCR, confirming specific regulation of STAT3 targets via G-CSF–G-CSFR ligation in CD114⁺ cells as compared with CD114⁻ cells that are relatively unresponsive to G-CSF, and moderately responsive to STAT3 inhibition (Fig. 5C and D). Scatter plot analysis further demonstrated that G-CSF treatment upregulates the key STAT3 pathway genes, whereas STAT3 inhibition reverses this effect (Supplementary Fig. S6A–S6C). The Ingenuity Pathway Analyses show that upregulation of STAT3 in CD114⁺ cells directly and indirectly inhibits TP53 (Supplementary Fig. S6D). Gene Ontology analysis demonstrates the
expected association of STAT3 activation with genes involved in proliferation, stemness, and antiapoptotic responses (Supplementary Table S2; ref. 27).

G-CSFR is a direct transcriptional target of STAT3 in neuroblastoma

Our findings suggest that G-CSF increases both STAT3 activation and percentage of CD114⁺ neuroblastoma cells. We hypothesized that STAT3 may directly regulate expression of the gene coding for CD114 (CSF3R) in neuroblastoma as was previously demonstrated for murine neutrophil precursors (28). First, we analyzed CSF3R mRNA expression by qPCR in FACS-isolated subpopulations from multiple neuroblastoma cell lines. There is a significant increase in expression in response to exogenous G-CSF in CD114⁺ cells with no increase in CD114⁻ tumor cells. This increase in CSF3R mRNA was blocked by STAT3 inhibition, either alone or combined with G-CSF treatment, suggesting that pSTAT3 directly regulates CSF3R expression in CD114⁺ cells (Fig. 6A).

Next, we analyzed the CSF3R 5'-UTR (3.8 kb) and promoter (2.5 kb) regions for putative STAT3-binding sites and found a canonical STAT3-binding site TTCCCGTAA in the 5'-UTR, located 200 bp (S) upstream from the translation start site (Fig. 6B). The promoter and 5'-UTR regions were cloned to drive GFP expression using an EGFP reporter plasmid. G-CSF treatment in NGP cells transduced with 5'-UTR-driven
reporter shows significant increase in percentage of CD114+ /GFP+ cells in contrast to untreated or reporter driven by promoter region (Fig. 6B). Finally, ChIP-qPCR confirmed direct binding of STAT3 and pSTAT3 (Y705) to the STAT3 transcriptional response element (S) upstream of the translational start site for CSF3R in neuroblastoma tumor subpopulations (Fig. 6C). Importantly, we demonstrate that G-CSF treatment, which we have shown activates pSTAT3, significantly enhanced pSTAT3 binding in CD114+ cells. Static treatment dramatically reduced both STAT3 and pSTAT3 binding to the CSF3R-binding site. Minimal STAT3 or pSTAT3 enrichment was observed in the CD114+ tumor population (Fig. 6C). Consistent with STAT3 transcriptional activation of the G-CSFR and inhibition by Static, STAT3 knockdown with shRNA reduced the percentage of CD114+ cells in different neuroblastoma cell lines tested (Supplementary Fig. S7). These data confirm that in neuroblastoma, STAT3 directly regulates CD114 expression in response to G-CSF treatment in CD114 receptor–positive cells.

Taken together, these data establish a positive feedback loop between G-CSF binding to its receptor (CD114) and STAT3-mediated upregulation of this receptor in CD114+ CSC-like neuroblastoma subpopulations (Fig. 7). Blockade of the G-CSF–STAT3 signaling pathway, either by pSTAT3 inhibition or by anti-G-CSF antibody, specifically downregulates expression of the G-CSFR or limits pSTAT3 signaling events that are involved in neural crest development and in CSC-driven neuroblastoma tumorigenesis. Our data also suggest that STAT3-mediated antia apoptotic pathways likely promote the survival and expansion of the CD114+ tumorigenic subpopulation (e.g., the observed marked sensitivity of CD114+ cells to pSTAT3 inhibitors compared with CD114− cells (Fig. 3D). Therefore, we propose that a G-CSF–G-CSFR–STAT3 feedback loop influences the survival and metastatic behavior of the neuroblastoma CSC subpopulation and represents an important CSC-specific therapeutic target.

Discussion

G-CSF is an inflammatory cytokine and neutrophil growth factor expressed from multiple cell types. G-CSF activates pSTAT3, a transcription factor with essential functions for induced pluripotent stem cells (iPSCs) reprogramming and for maintenance of ESC (embryonic stem cell) pluripotency (29–31). Here, we demonstrate a novel function of G-CSF promoting the proliferation and metastasis of neuroblastoma. This primarily occurs through the G-CSF–dependent activation of pSTAT3 signaling in CD114+ CSC-like tumor subpopulation. In addition, this tumorigenic subpopulation is highly sensitive to blockade of G-CSF signaling, as well as to STAT3 inhibition. Our data confirm that G-CSF is (i) an important growth factor for neuroblastoma, (ii) markedly affects tumor metastasis, and (iii) suggest that inhibition of the G-CSF–STAT3 signaling axis may be an effective therapeutic approach.

Our results demonstrate a direct effect of G-CSF, promoting the expansion and activity of the G-CSFR–positive CSC-like subpopulation in both xenogeneic and syngeneic neuroblastoma murine tumor models. Previous studies of the effect of G-CSF on other murine tumor models demonstrated pro-tumorigenic effects through indirect immune-mediated processes. In breast and lung carcinoma models, exogenous or tumor-derived G-CSF promotes expansion of myeloid-derived suppressor cell (MDSC) subsets within the circulation and tumor microenvironment (19, 32). These MDSCs, in turn, secrete proangiogenic factors and downregulate proapoptotic TRAIL and MPO, leading to tumor progression and metastatic spread to the lung (33, 34). These results are consistent with our findings that G-CSF promotes overall tumorigenicity and
G-CSF Is a Cancer Stem Cell–Specific Growth Factor

metastasis. We demonstrated for the first time a direct effect of G-CSF in expanding a unique neuroblastoma CSC subpopulation (<1% of total neuroblastoma cells) to promote neuroblastoma tumorigenicity and metastasis.

Our data also demonstrate maintenance of a positive feedback loop between G-CSFR and STAT3-mediated transcription of the G-CSFR (CD114) in this tumorigenic subpopulation to further enhance G-CSFR gene (loop between G-CSFR and STAT3-mediated transcription of the G-CSF–STAT3 pathway by anti-G-CSF or G-CSFR antibodies, or blockade of STAT3 signaling, may well represent a novel neo-adjuvant to standard chemotherapy. In addition to STAT3 inhibition, Janus-activated kinase (JAK) inhibition may also provide therapeutic efficacy by blocking phosphorylation of STAT3. Both JAK and STAT3 inhibitors are under clinical development (46). Novel nongenotoxic therapeutic strategies for infants and children with neuroblastoma are urgently needed. These might include combining STAT3 blockade with transcriptional inhibition of MYCN (e.g., with CDK7; ref. 47) or BRD4 (48).

Finally, G-CSF is currently extensively used in pediatric and adult oncology as an adjuvant to chemotherapy to limit therapy-related neutropenia (49). In high-risk neuroblastoma, it is typically administered after each cycle of chemotherapy to reduce treatment-related toxicity although there is very limited evidence that this improves overall survival (50). Our data argue for a reconsideration of G-CSF use in neuroblastoma, as well as a careful reevaluation of the risk:benefit ratio for G-CSF and other proinflammatory cytokines in cancer therapy.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: S. Agarwal, Z. Chen, L.S. Metelitsa, E.S. Kim, J.M. Shohet
Development of methodology: S. Agarwal, A. Lakoma, Z. Chen, J. Hicks, L.S. Metelitsa, E.S. Kim, J.M. Shohet
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S. Agarwal, A. Lakoma, Z. Chen, J. Hicks, E.S. Kim
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S. Agarwal, A. Lakoma, Z. Chen, J. Hicks, E.S. Kim, J.M. Shohet
Writing, review, and/or revision of the manuscript: S. Agarwal, A. Lakoma, L.S. Metelitsa, E.S. Kim, J.M. Shohet
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): S. Agarwal, Z. Chen
Study supervision: S. Agarwal, E.S. Kim, J.M. Shohet

Acknowledgments
The authors thank Drs. David Poplack, Malcolm Brenner, and Jeffrey Rosen for their comments and help with this article and Linjie Guo for characterizing NB975 cell line. The authors also would like to thank Amos Gailewad and Tatiana Golsova for their outstanding expertise and support within the flow cytometry core facilities at the Texas Children’s Cancer Center. The authors would also like to thank Rana Maa at the pathology core facilities at Baylor College of Medicine for her assistance with immunohistochemistry.

Grant Support
This work was supported by grants from NIH (R01 CA174808), Alex’s Lemonade Stand Foundation, Giorn-Lonenbaugh Foundation, and the Children’s Neuroblastoma Research Foundation to J.M. Shohet. Support to L.S. Metelitsa from the NIH (R01 CA116548) and support to E.S. Kim from the St. Baldrick’s Foundation, Texas Children’s Hospital Department of Surgery Seed Funding.

Received October 3, 2014; revised April 7, 2015; accepted April 11, 2015; published OnlineFirst April 23, 2015.

References

www.aacrjournals.org Cancer Res; 75(12) June 15, 2015 2577

Downloaded from cancerres.aacrjournals.org on April 12, 2017. © 2015 American Association for Cancer Research.
29. Agarwal et al.
G-CSF Promotes Neuroblastoma Tumorigenicity and Metastasis via STAT3-Dependent Cancer Stem Cell Activation

Saurabh Agarwal, Anna Lakoma, Zaowen Chen, et al.

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-14-2946</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2015/04/25/0008-5472.CAN-14-2946.DC1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cited articles</th>
<th>This article cites 49 articles, 19 of which you can access for free at: http://cancerres.aacrjournals.org/content/75/12/2566.full.html#ref-list-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citing articles</td>
<td>This article has been cited by 5 HighWire-hosted articles. Access the articles at: /content/75/12/2566.full.html#related-urls</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>