A Systematic Approach to Defining the microRNA Landscape in Metastasis

Giridhar Mudduluru, Mohammad Abba, Jasmin Bahtliner, Nitin Patil, Malek Scharp, Taral R. Lunavat, Jörg Hendrik Leupold, Olga Oleksiuks, Diliafruz Juraeva, Wilko Thiele, Melanie Röthley, Axel Benner, Yimon Ben-Neriah, Jonathan Sleeman, and Heike Allgayer

Précis: This article offers a systematic definition of the entire metastasis-associated miRNA landscape using an unbiased profiling approach of metastasis tissues from patients.

Novel Cell-Penetrating Peptide-Based Vaccine Induces Robust CD4+ and CD8+ T Cell-Mediated Antitumor Immunity

Madiha Derouazi, Wilma Di Berardino-Besson, Elodie Belnoue, Sabine Hoepner, Romy Walther, Mahdia Benkhoucha, Patrick Teta, Yannick Dufour, Céline Yacoub Maroun, Andres M. Salazar, Denis Martinvalet, Pierre-Yves Dietrich, and Paul R. Walker

Précis: These results offer preclinical proof of concept for the use of a cell-penetrating peptide vaccine with robust antitumor activity in multiple aggressive tumor models.

Oncogenic Transformation Can orchestrate Immune Evasion and Inflammation in Human Mesenchymal Stem Cells Independently of Extrinsic Immune-Selective Pressure

Alex Miranda, Juan M. Funes, Nilda Sánchez, Celia M. Limia, Mónica Mesa, Sergio A. Quezada, Rolando Pérez, and José de León

Précis: This conceptually powerful study illuminates how the effects of oncogene activation extend beyond well-studied cell autonomous roles in proliferation, apoptosis, and invasion to suppressive effects on the local immune microenvironment, which are essential to license immune escape as the critical step in tumorigenesis.

Neuroblastoma Arginase Activity Creates an Immunosuppressive Microenvironment That Impairs Autologous and Engineered Immunity

Francis Mussai, Sharon Egan, Stuart Hunter, Hannah Webber, Jonathan Fisher, Rachel Wheat, Carmel McConville, Yordan Sbirkov, Kate Wheeler, Gavin Bendle, Kevin Petrie, John Anderson, Louis Chesler, and Carmela De Santo

Précis: These findings show how pediatric neuroblastomas inactivate antitumor immune responses, including in the setting of immunotherapy, correlating with a worse patient survival.
Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay–Independent Manner
Franz Kratochvill, Nina Grat, Joseph E. Quali, Lee-Ann Van De Veld, Hongbo Chi, Pavel Kovarik, and Peter J. Murray

Précis: Manipulation of a p38 kinase-related signaling axis in macrophages appears to strongly affect the growth of solid tumors, suggesting a new strategy to reprogram inflammation in tumor microenvironments.

Cytomegalovirus Immediate-Early Proteins Promote Stemness Properties in Glioblastoma
Liliana Soroceanu, Lisa Matlaf, Sabeena Khan, Armin Akhavan, Eric Singer, Vladimir Bezrookove, Stacy Decker, Saleena Ghanny, Piotr Hadaczek, Henrik Bengtsson, John Ohlfest, Maria-Gloria Luciani-Torres, Lualhati Harkins, Arie Perry, Hong Guo, Patricia Soteropoulos, and Charles S. Cobbs

Précis: This study unveils a novel paradigm in viral oncogenesis, exposing the role of human cytomegalovirus in driving the growth of cancer stem cells in glioblastoma.

EGF Receptor Promotes Prostate Cancer Bone Metastasis by Downregulating miR-1 and Activating TWIST1
Yung-Sheng Chang, Wei-Yu Chen, Juan Juan Yin, Heather Sheppard-Tillman, Jiaoti Huang, and Yen-Nien Liu

Précis: The findings of this study raise the interesting idea that miRNA expression might be directly targeted by nuclear growth factor receptor isoforms, with relevance for the coordinated progression of malignancy.

KIAA1324 Suppresses Gastric Cancer Progression by Inhibiting the Oncoprotein GRP78
Jin-Muk Kang, Sujin Park, Staci Jakyong Kim, Hyejung Kim, Boni Lee, Junil Kim, Jinah Park, Shin Tae Kim, Han-Kwang Yang, Woo Ho Kim, and Seong-Jin Kim

Précis: These findings provide evidence of a novel mechanism of gastric carcinogenesis and also suggest a novel potential biomarker and therapeutic target for gastric cancer.

Interleukin-6 Stimulates Defective Angiogenesis
Ganga Gopinathan, Carla Milagre, Oliver M.T. Pearce, Louise E. Reynolds, Kairbaan Hodivala-Dille, David A. Leinster, Haihong Zhong, Robert E. Hollingsworth, Richard Thompson, James R. Whiteford, and Frances Bakkal

Précis: These findings have important implications for understanding abnormal angiogenic processes in cancer, as well as their connection to immune escape and the use of VEGF or IL6 targeting therapies in cancer patients.

Implication of a Chromosome 15q15.2 Locus in Regulating UBR1 and Predisposing Smokers to MGMT Methylation in Lung

Précis: Genetic polymorphisms that affect DNA methylation of the DNA repair gene MGMT have strong clinical relevance in smokers, not only for cancer risk assessment but also for stratification of lung cancer patients for alkylating agent chemotherapy.

Erlotinib Pretreatment Improves Photodynamic Therapy of Non–Small Cell Lung Carcinoma Xenografts via Multiple Mechanisms
Shannon M. Gallagher-Colombo, Joann Miller, Keith A. Cengel, Mary E. Putt, Sergei A. Vinogradov, and Theresa M. Busch

Précis: These findings offer a strong impetus to incorporate the EGFR inhibitor erlotinib into clinical trials of photodynamic therapy, based on understanding drug mechanisms that rationalize its combination with other cytotoxic therapies.
3127 Minor Changes in Expression of the Mismatch Repair Protein MSH2 Exert a Major Impact on Glioblastoma Response to Temozolomide
José L. McFalone-Figueroa, Christian J. Braun, Monica Stanciu, Zachary D. Nagel, Patrizia Mazzucato, Dewkaar Sangaraju, Edvinas Cerniauskas, Kelly Barford, Amanda Vargas, Yinlin Chen, Natalia Tretjakova, Jacqueline A. Lees, Michael T. Hemann, Forest M. White, and Leona D. Samson

Précis: Modest decreases in DNA mismatch repair factor MSH2 can dramatically alter chemosensitivity to a drug used commonly to treat aggressive cancers, with little effect on the mismatch repair itself, suggesting that subtle mismatch repair changes mediating drug resistance may be more prevalent than appreciated.

3139 Identification of Oncogenic and Drug-Sensitizing Mutations in the Extracellular Domain of FGFR2

Précis: Based on other advances in targeting FGF receptors in cancer, the novel mutations identified in this study in the extracellular domain of the FGF receptor FGFR2 could offer therapeutic targets in a variety of solid tumors.

3147 Improving Drug Penetrability with iRGD Leverages the Therapeutic Response to Sorafenib and Doxorubicin in Hepatocellular Carcinoma

Précis: These findings establish a clinically tractable method to safely widen the therapeutic window for chemotherapy in patients with liver cancer, along with a noninvasive method to identify candidate subjects, offering immediate translational impact for evaluation in human trials.

TUMOR AND STEM CELL BIOLOGY

3155 CASC15-S Is a Tumor Suppressor IncRNA at the 6p22 Neuroblastoma Susceptibility Locus

Précis: This unbiased genetic association study identifies the involvement of a long noncoding RNA in initiating pediatric neuroblastoma, helping explain the low somatic mutation rates in protein coding genes observed in this lethal malignancy and suggesting new directions for therapeutic intervention.

3167 TP53 Silencing Bypasses Growth Arrest of BRAFV600E-Induced Lung Tumor Cells in a Two-Switch Model of Lung Tumorigenesis
Anny Shai, David Danksort, Joseph Juan, Shon Green, and Martin McMahon

Précis: This study describes new mouse models for temporal dissociation of genetic events in lung carcinogenesis and establishes a core role for the p53 pathway in restricting lung cancer development.

3181 Amplification of Long Noncoding RNA ZFAS1 Promotes Metastasis in Hepatocellular Carcinoma
Tao Li, Junjie Xie, Xuan Shen, Dongfeng Cheng, Yuan Shi, Zhichong Wu, Xiaoxing Deng, Hao Chen, Baiyong Shen, Chenghong Peng, Hongwei Li, Qian Zhan, and Zhecheng Zhu

Précis: These findings illuminate the oncogenic function of a noncoding RNA that acts by opposing tumor-suppressive effects of miR-150, suggesting utility as a prognostic biomarker or target for clinical management of HCC.
ABOUT THE COVER

The immunofluorescence image is of an aortic ring treated with IL6 stained for vessels (green), pericytes (red), and cell nuclei (blue). Here, it is shown that IL6 stimulates angiogenesis with defective pericyte coverage. Treatment of peritoneal xenografts of ovarian cancer with an anti-IL6 antibody restored pericyte coverage of the tumor blood vessels. The authors’ findings have implications for the use of cancer therapies that target IL6 and for understanding abnormal angiogenesis in cancers, chronic inflammatory disease, and stroke. For details, see article by Gopinathan and colleagues on page 3098.