Plasminogen Activator Inhibitor-1 in Cancer: Rationale and Insight for Future Therapeutic Testing

Veronica R. Placencio¹,² and Yves A. DeClerck¹,²,³

Abstract

Despite its function as an inhibitor of urokinase and tissue-type plasminogen activator (PA), PA inhibitor-1 (PAI-1) has a paradoxical protumorigenic role in cancer, promoting angiogenesis and tumor cell survival. In this review, we summarize preclinical evidence in support of the protumorigenic function of PAI-1 that has led to the testing of small-molecule PAI-1 inhibitors, initially developed as antithrombotic agents, in animal models of cancer. The review discusses the challenges and the opportunities that lay ahead to the development of efficacious and nontoxic PAI-1 inhibitors as anticancer agents.

Introduction

Plasminogen activator inhibitor-1 (PAI-1) is a serine protease inhibitor (serpin) and the main regulator of the plasminogen activation system. It acts by inhibiting tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA; ref. 1). PAI-1 has a pleiotropic biologic function that stems from its complex structure. Three specific protein-binding domains in the molecule have been well characterized (Fig. 1; ref. 1): a domain in the reactive center loop (RCL) that binds to PA, a domain in the flexible joint region that binds to vitronectin composed of helix D (hD), helix E (hE), and helix F (hF), and a domain within hD and hE that binds to low-density lipoprotein receptor-related protein (LRP1). Upon binding to the RCL, PA cleaves PAI-1 at P1-P1' inducing a dynamic conformational change that inserts the RCL as a β-strand (4A) into the core of the protein. The binding of PAI-1 to PA forms a catalytically inactive complex, which is internalized when combined with the receptor for uPA (uPAR) and LRP1 (2). Premature insertion of the RCL into the β-sheet is the basis for the conversion of active PAI-1 into its latent form. Binding of PAI-1 to LRP1 also promotes cell migration and signaling (3). Binding of the flexible joint region of PAI-1 to vitronectin has multiple consequences: it masks the adjacent RGD-binding site for αv integrins and inhibits cell attachment to vitronectin (2) and stabilizes PAI-1 inhibiting its conversion to latency and increasing its anti-uPA ability by 200-fold (4).

Adding to the complexity of the function of PAI-1 in cancer is the fact that it can have paracrine and autocrine effects as it is produced by tumor cells and nonmalignant cells, including endothelial cells (EC), macrophage cells, or adipocytes in the tumor microenvironment.

On the basis of the protumorigenic role of uPA in angiogenesis, tumor invasion, and metastasis, it was anticipated that PAI-1 would have an antitumorigenic function. Surprisingly, several studies revealed a paradoxical association between elevated levels of PAI-1 in blood and tissue samples of cancer patients and an unfavorable clinical outcome and poor response to therapy (1, 5). The observation that the production of PAI-1 by EC, fibroblasts, adipocytes, smooth muscle cells, and macrophage cells in the tumor microenvironment was stimulated by protumorigenic factors such as TGFβ, IL-6, and TNFα added further evidence supporting a protumorigenic role (6, 7). In this article, we review the mechanisms and evidence in mouse models supporting a protumorigenic function for PAI-1. We then present recent pharmacologic approaches and preclinical studies aimed at targeting PAI-1 in cancer and discuss the lessons learned from these studies.

PAI-1 Is Proangiogenic

A first clue explaining the paradoxical association of PAI-1 with more aggressive forms of cancer came from the observation by several laboratories, including our own, that PAI-1 has a proangiogenic activity through its antiprotease and vitronectin-binding functions. The activity of PAI-1 on angiogenesis is, however, dose dependent with a promoting activity at physiologic concentrations (8, 9) and an inhibitory activity at pharmacologic concentrations (10). This is explained by the fact that at physiologic concentrations, PAI-1 inhibition of uPA limits the cleavage by pericellular plasmin of membrane-associated Fas-L at R144-K145 and the release of a soluble Fas-L fragment that induces Fas-mediated apoptosis in EC (11). PAI-1 also stimulates angiogenesis through its vitronectin-binding function promoting the detachment of EC from vitronectin and their migration toward fibronectin rich tissues (9).

¹Division of Hematology, Oncology and Blood and Bone Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, California. ²The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California. ³Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California.

Corresponding Author: Yves A. DeClerck, Children’s Hospital Los Angeles, 4650 Sunset Boulevard, MSF54, Los Angeles, CA 90027. Phone: 323-361-2500; Fax: 323-361-4902; E-mail: declerck@usc.edu

doi: 10.1158/0008-5472.CAN-15-0876

©2015 American Association for Cancer Research.
PAI-1 Inhibits Spontaneous Apoptosis in Cancer Cells

PAI-1 protects tumor cells from apoptosis through multiple mechanisms. Similar to EC, it inhibits Fas-mediated apoptosis in several human cancer cells, including brain metastasis through its control over pericellular plasmin activity (12, 13). PAI-1 also affects intrinsic apoptosis, as the absence of extracellular PAI-1 in tumor cells results in higher levels of activated caspase-9 (14). Intracellular PAI-1 also promotes cell survival through its ability to inhibit caspase-3 protecting tumor cells from chemotherapy-induced apoptosis (15).

What Have We Learned from Mouse Tumor Models?

Observations in PAI-1–deficient mice have provided additional and important clues on the function of PAI-1 in tumorigenesis and angiogenesis. The vast majority of experiments using PAI-1–deficient murine tumor cells xenografted into WT or PAI-1–deficient mice consistently demonstrated the contributory role of host and tumor-derived PAI-1 to tumor growth, angiogenesis, and metastasis (Table 1; refs. 10, 16–21). Consistently, maximum antitumor effect was shown upon PAI-1 suppression in both host and tumor cells pointing to a combined role for extracellular PAI-1. Similar observations were made when PAI-1–deficient human tumor cells were xenotransplanted in immunodeficient PAI-1 null mice. These studies typically demonstrated that suppression of PAI-1 expression in human tumor cells and in mouse host cells resulted in poor tumor take and slower tumor growth (11, 12, 22, 23). However in some situations, such as in skin carcinoma, the effects observed depended on the tumor grade with minimal effects observed in high-grade tumors (23).

In contrast with the above data, experiments using genetically engineered mice (GEM) prone to develop cancer crossed with PAI-1 null mice failed to demonstrate any effect of PAI-1 suppression on tumor initiation, growth, or metastasis. For example, when FVB-PymT mice prone to develop mammary tumors were crossed with PAI-1 null mice, there was no effect on the development of mammary tumors, metastasis, or survival (24). Similarly, genetic ablation of PAI-1 had no effect on tumor development in Apc/Apc1638N/PAI-1–/– mice prone to develop colon cancer (25), in TRP-1SV40 Tag/PAI-1–/– mice prone to develop ocular tumors (26), and in K14-HPV16/PAI-1–/– mice prone to develop skin cancer (27). An explanation for this difference of effect between transplanted and GEM mice is the possible presence of...
PAI-1 Inhibition in Preclinical Cancer Models

compensatory serpins, including PAI-2, protein C inhibitor, proteinase nexin-1, or maspin (28–31), whose overexpression in transformed cells may have compensated for a lack of PAI-1 (27–31).

Pharmacologic Inhibition of PAI-1

Over the last two decades, several laboratories and pharmaceutical companies have developed a variety of small-molecule PAI-1 inhibitors using high-throughput screening (32). The vast majority of these inhibitors are molecules interfering with the molecular interactions of PAI-1 to inhibit tPA and uPA by binding to the reactive center loop and by inducing a conformational change that promotes an irreversible conversion of PAI-1 into its latent form. To our knowledge, no inhibitors specifically interacting with the vitronectin-binding domain of PAI-1 have been reported yet. The main focus of investigations on the activity of these inhibitors in biologic processes has been in cardiovascular diseases (thrombus repermeabilization), lung fibrosis, Alzheimer’s disease and to a lesser degree in cancer. A first family of PAI-1 inhibitors developed consisted of diketopiperazine inhibitors that interfere with tPA binding to the protease-binding domain of the RCL. These inhibitors (XR334, XR1853, XR5082, and XR5118) block tPA inhibition by PAI-1 in vitro (33, 34). However, their in vivo efficacy is limited by their low solubility, poor oral availability, or high IC$_{50}$ values (in the 5 to >1,000 μM/L range) that are unachievable in the blood upon administration in animals. Other menthol-based, benzothiophene, and butadiene small molecules with lower IC$_{50}$ values (0.64 to 44 μM/L) in vitro were developed (35–37); however, despite their good anti-PAI-1 activity in vitro, they were either not tested or not further pursued in animal experiments for reasons not reported.

One indole oxoacetic acid PAI-1 inhibitor, PAI-039 (tiplaxtinin; ref. 38), was extensively and successfully tested for its antithrombotic activity in preclinical rat and canine models of acute arterial thrombosis (38, 39). Other inhibitors derived from the structure of this inhibitor (PAI-749 and PAZ-417) then underwent human phase I clinical trials in healthy volunteers and in patients with Alzheimer’s disease (40–42). To date, the results of these studies have not been reported.

As an alternative approach, using computer simulation models mimicking the RCL insertion within the strands of β-sheet A, conformation disrupting agents were designed. Such compounds include a family of dimeric 2-acylamino-3-thiophenecarboxylic acid derivatives (TM5001 and TM5007) developed with the anticipation that by binding to the s4A position of the A β-sheet, they would induce the conversion of PAI-1 into its latent and inactive form (43). These inhibitors were found active against vascular thrombosis in a rat model and against lung fibrosis in murine models. Their pharmacokinetic properties, however, were suboptimal due to their relatively high lipophilicity [calculated octanol/water partition coefficient (ClogP) value of 5.79, above the ideal 2–3 value]. A second-generation molecule (TM5275) with better oral pharmacokinetic properties and lower ClogP of 3.37 was then developed (44). TM5275 showed activity in rat and mouse models of acute arterial thrombosis and lung fibrosis. Importantly, this inhibitor had no systemic toxicity as it did not prolong bleeding time in nonhuman primates (45).

A limiting element in the activity of these inhibitors so far, has been their lack of activity against the stable form of PAI-1 bound to vitronectin (46). Thus, the recent focus has been on the development of inhibitors active against vitronectin-bound PAI-1. These efforts, however, have been limited by a lack of crystal structure information on vitronectin-bound PAI-1 (47). Polyphenolic inhibitors of PAI-1 (CDE-066 and 096) synthesized on the basis of the structure of small molecules identified by a high-throughput screen were found to bind to the sβaC pocket of PAI-1.

Table 1. Outcome of the genetic ablation of PAI-1 in the host and/or implanted tumor cells in murine models of cancer

<table>
<thead>
<tr>
<th>Model</th>
<th>PAI-1 host mouse</th>
<th>Implanted cells</th>
<th>Tumor growth</th>
<th>Angiogenesis</th>
<th>Metastasis</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syngeneric implantation</td>
<td>+/+</td>
<td>B16 melanoma</td>
<td>No difference</td>
<td>n/e</td>
<td>No difference</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>+/+</td>
<td>B16 melanoma</td>
<td>No difference</td>
<td>n/e</td>
<td>No difference</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>–/+</td>
<td>Malignant keratinocytes</td>
<td>Decreased</td>
<td>Decreased</td>
<td>n/e</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>–/+</td>
<td>T241 fibrosarcoma</td>
<td>Decreased</td>
<td>Decreased</td>
<td>n/e</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>+/+</td>
<td>Malignant keratinocytes</td>
<td>Decreased</td>
<td>Decreased</td>
<td>n/e</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>–/+</td>
<td>Malignant keratinocytes</td>
<td>Decreased</td>
<td>Decreased</td>
<td>n/e</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>–/+</td>
<td>Spontaneously transformed primary lung fibroblasts</td>
<td>Decreased</td>
<td>n/e</td>
<td>n/e</td>
<td>18</td>
</tr>
<tr>
<td>Xenograft</td>
<td>–/+</td>
<td>Human neuroblastoma</td>
<td>Decreased</td>
<td>n/e</td>
<td>n/e</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>+/+</td>
<td>Human M21 melanoma</td>
<td>Increased</td>
<td>Increased</td>
<td>n/e</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>–/+</td>
<td>Human HacCAT-I and HacCAT AS-R73</td>
<td>Decreased</td>
<td>Decreased</td>
<td>n/e</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>–/+</td>
<td>Human PAI-1 KD HT1080 fibrosarcoma, colon cancer</td>
<td>Decreased</td>
<td>n/e</td>
<td>n/e</td>
<td>12</td>
</tr>
<tr>
<td>GEMM</td>
<td>MMTV-PymT/PAI-1–/–</td>
<td>No difference</td>
<td>No difference</td>
<td>No difference</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ApC/Apc1638N/PAI-1–/–</td>
<td>No difference</td>
<td>No difference</td>
<td>n/e</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRP-UV/40 Tag/PAI-1–/–</td>
<td>No difference</td>
<td>No difference</td>
<td>Decreased</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ki6-HPV16/PAI-1–/–</td>
<td>No difference</td>
<td>No difference</td>
<td>n/e</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: GEMM, genetically engineered mouse model; +/–, transgenic overexpressing PAI-1 mice; –/–, PAI-1 deficient mice; n/e, the experimental parameter was not evaluated.
cancer progression, its potential as a target for therapeutic intervention in cancer has only been recently considered and explored. These studies provide important insight on the need to develop better inhibitors for cancer. The need for chronic administration and thus a pharmacologic profile with a prolonged plasma half-life of orally available inhibitors is an important consideration. Although much work has been done on the development of orally available compounds, the half-life of these inhibitors in vivo is 2 to 3 hours and therefore would be impractical in long-term cancer therapy. The fact that most inhibitors developed until now are active in vitro at concentrations in the μmol/L range represents another limitation. Such concentrations are typically difficult to reach in blood and more importantly in tumor tissues for an extensive period of time. The lack of activity of most inhibitors against the stable vitronectin-bound form of PAI-1 is a third limitation, since this is the predominant form of PAI-1 in vitronectin-rich tumor tissues (55). A fourth limitation is the potential systemic effect that the chronic administration of PAI-1 inhibitors may have on hemostasis. By suppressing the control that PAI-1 exerts on plasmin-mediated fibrinolysis, small-molecule PAI-1 inhibitors may impair hemostasis and cause excessive spontaneous bleeding (56). Although studies in nonhuman primates have shown an absence of side effects on systemic hemostasis following the chronic administration of some PAI-1 inhibitors (44, 45), this aspect deserves more extensive investigation.

In summary, targeting PAI-1 in cancer therapy remains an attractive but also challenging approach that will require the design and development of inhibitors that address some of the current limitations outlined above. As new inhibitors with better pharmacologic profiles are developed, they should continue to be tested in preclinical models of cancer.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
The authors thank Dr. Marta Kubala for reading through the article and showing them how to generate the crystal structure to highlight the inhibitor-binding sites.

Grant Support
This work was supported by the U.S. Department of Health and Human Services/National Institutes of Health with a grant (Y.A. DeClerck; grant SB01 CA 129377).

Received March 31, 2015; revised April 27, 2015; accepted April 28, 2015; published OnlineFirst July 15, 2015.

Challenges and Opportunities

Despite the fact that much is known on the structure of PAI-1, its complex biologic function, and its protumorigenic role in

Table 2. Outcome of pharmacologic inhibition of PAI-1 in preclinical murine models of cancer

<table>
<thead>
<tr>
<th>Compound</th>
<th>Inhibitor class</th>
<th>IC50 (μmol/L)</th>
<th>Half-life (h)</th>
<th>Cancer model</th>
<th>Efficacy in cancer models</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAI-039</td>
<td>Indole oxoacetic</td>
<td>2.7</td>
<td>2.95–3.73</td>
<td>Bladder and cervical cancer</td>
<td>Yes</td>
</tr>
<tr>
<td>TMS275</td>
<td>N-acylanthranilic</td>
<td>6.9</td>
<td>2.5</td>
<td>Ovarian cancer</td>
<td>Yes</td>
</tr>
<tr>
<td>SK-116, SK-216</td>
<td>Not stated</td>
<td>35, 44</td>
<td>n/e</td>
<td>Lung cancer and melanoma</td>
<td>Yes</td>
</tr>
<tr>
<td>SK-216</td>
<td>Not stated</td>
<td>44</td>
<td>n/e</td>
<td>Lung cancer and melanoma</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Abbreviation: n/e, the experimental parameter was not evaluated.

with an IC50 of 32 μmol/L and 25 μmol/L, respectively (Fig. 1; refs. 48, 49). CDE-096 induces allosteric conformational changes affecting the flexibility of PAI-1 and preventing it from binding to PA and decreasing vitronectin binding (49). CDE-096 was still able to interact with vitronectin-bound PAI-1, although the magnitude of polarization was decreased 7.3-fold compared with binding-free PAI-1. The in vivo pharmacokinetic profile of these inhibitors is unknown.

Pharmacologic Inhibition of PAI-1 in Cancer Therapy

Pharmacologic inhibition of PAI-1 in cardiovascular diseases has been the primary goal with the objective to prevent inhibition of intravascular fibrinolysis and subsequently promote thrombus repermeabilization in an acute setting. In contrast, preclinical evidence supporting the therapeutic efficacy of small PAI-1 inhibitors in cancer has been limited (Table 2). In cancer, the objective is to prevent inhibition of pericellular activation of plasminogen and interfere with PAI-1-vitronectin interactions. Although in cardiovascular and thrombotic disease, the desired inhibition is short-term; in cancer (or other chronic conditions), it is long-term requiring a pharmacologic profile suitable for chronic administration (32).

Insofar, four small-molecule PAI-1 inhibitors have been tested in preclinical models of cancer. Although limited, these studies have shown antitumor activity. SK-116 and SK-216 inhibitors administered orally for 9 weeks to Apc/Apc1638N mice that spontaneously developed intestinal polyps caused an almost 2-fold reduction in the number of small intestinal polyps (50). When administered to PAI-1 producing Lewis lung carcinoma and PAI-1-nonproducing B16 melanoma tumor-bearing mice, SK-216 caused a 2-fold reduction in subcutaneous primary tumor size and inhibited angiogenesis and metastases (51). The oral administration of PAI-039 to mice xenotransplanted with human T24 bladder and HeLa cervical cancer cells resulted in a 2-fold reduction of tumor volume after 14 days associated with a decrease in tumor cell proliferation and vascularization and an increase in apoptosis (52). The TM5275 inhibitor was recently shown to increase apoptosis in vitro in ovarian cancer cell lines (53). The in vivo activity of these inhibitors in cancer models have not been reported with the exception of TM5275 and TM5441 in a most recent study (54).

Challenges and Opportunities

Despite the fact that much is known on the structure of PAI-1, its complex biologic function, and its protumorigenic role in

References

2. Schroock F, Arroyo de Prada N, Spertl S, Schmitt M, Viktor M. Interaction of plasminogen activator inhibitor type-1 (PAI-1) with vitronectin (Vn).


antithrombotic benefits devoid of bleeding effect in nonhuman pri-
relationships of new 2-acylamino-3-thiopheneacetic acid dimers as
plasminogen activator inhibitor-1 inhibitors. Chem Pharm Bull 2010;
58:615–9.
Mechanism of inactivation of plasminogen activator inhibitor-1 by a small
47. Rouch A, Vanucci-Bacque C, Bedos-Belval F, Baltas M. Small molecules
inhibitors of plasminogen activator inhibitor-1 - An overview. Eur J Med
Characterization of a novel class of polyphenolic inhibitors of plasminogen
Mechanistic characterization and crystal structure of a small molecule
inactivator bound to plasminogen activator inhibitor-1. Proc Natl Acad
50. Mutoh M, Niho N, Komiya M, Takahashi M, Ohtsubo R, Nakatogawa K,
et al. Plasminogen activator inhibitor 1 (PAI-1) blockers suppress intestinal
SK-216, an inhibitor of plasminogen activator inhibitor-1, limits tumor progres-
52. Gomes-Giacomo E, Miyake M, Goodison S, Rosser CI. Targeting plas-
minogen activator inhibitor-1 inhibits angiogenesis and tumor growth in a human cancer xenograft model. Mol Cancer Ther 2013;12:
2697–708.
Inhibition of plasminogen activator inhibitor-1 is a potential therapeutic
54. Placencio VR, Ichimura A, Miyata T, DeClerck YA. Small molecule inhibi-
tors of plasminogen activator inhibitor-1 elicit anti-tumorigenic and
55. Declerck PJ, De Mol M, Alesi MC, Baudner S, Paques EP, Preissner KT,
et al. Purification and characterization of a plasminogen activator
inhibitor 1 binding protein from human plasma. Identification as a
multimeric form of S protein (vitronectin). J Biol Chem 1988;263:
15454–61.
56. Fay WP, Parker AC, Condrey LR, Shapiro AD. Human plasminogen
activator inhibitor-1 (PAI-1) deficiency: characterization of a large kindred
57. Sharp AM, Stein PE, Pannu NS, Carrell RW, Berkenpas MB, Ginsburg D,
et al. The active conformation of plasminogen activator inhibitor 1, a
target for drugs to control fibrinolysis and cell adhesion. Structure
58. Stout TJ, Graham H, Buckley DJ, Matthews DJ. Structures of active and
latent PAI-1: a possible stabilizing role for chloride ions. Biochemistry
Plasminogen Activator Inhibitor-1 in Cancer: Rationale and Insight for Future Therapeutic Testing

Veronica R. Placencio and Yves A. DeClerck


Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-15-0876

Cited articles
This article cites 56 articles, 19 of which you can access for free at:
http://cancerres.aacrjournals.org/content/75/15/2969.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/75/15/2969.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.