BREAKING ADVANCES

3193 Highlights from Recent Cancer Literature

REVIEWS

3195 Galectin-Binding O-Glycosylations as Regulators of Malignancy
 Charles J. Dimitroff

3203 Mitochondrial DNA in Tumor Initiation, Progression, and Metastasis: Role of Horizontal mtDNA Transfer
 Michael V. Berridge, Lanfeng Dong, and Jiri Neuzil

PRIORITY REPORT

3209 Interleukin-6 Prevents the Initiation but Enhances the Progression of Lung Cancer
 Zhaoxia Qu, Fan Sun, Jingjiao Zhou, Liwen Li, Steven D. Shapiro, and Gutian Xiao
 Précis: These findings reveal complexity in the role of IL6 signaling at different stages of lung cancer development, improving pathophysiological understanding in this disease and rationalizing IL6/STAT3 targeting therapies there.

CLINICAL STUDIES

3216 Tumor-Specific Effector CD8+ T Cells That Can Establish Immunological Memory in Humans after Adoptive Transfer Are Marked by Expression of IL7 Receptor and c-myc
 Précis: The discovery of two cell intrinsic biomarkers that can predict long-term host persistence of tumor-specific T cells that are adoptively transferred to cancer patients has direct and immediate implications for improving adoptive T-cell immunotherapies.

3255 Endothelial Thermotolerance Impairs Nanoparticle Transport in Tumors
 Précis: Nanomaterials that assist the delivery of therapeutics into solid tumors are desired, but molecular adaptations in the tumor endothelium may counteract these effects, with direct consequences for therapeutic efficacy.
Table of Contents

MICROENVIRONMENT AND IMMUNOLOGY

3268
Tumors Escape CD4+ T-cell–Mediated Immunosurveillance by Impairing the Ability of Infiltrating Macrophages to Indirectly Present Tumor Antigens
Anders Aune Tveita, Fredrik Schjosvold, Ole Audun Haabeth, Marte Fauskanger, and Bjarne Bogen
Précis: Tumors appear to escape immunity in part by indirectly blocking the ability of roving macrophages to present tumor antigens to the immune system, a finding that may be relevant to optimizing T-cell immunotherapies for cancer.

3279
Rapamycin Impairs Antitumor CD8+ T-cell Responses and Vaccine-Induced Tumor Eradication
Nada Chaoul, Catherine Fayolle, Belinda Desruess, Marine Oberkampf, Alexandre Tang, Daniel Ladant, and Claude Leclerc
Précis: The essential role of mTOR for antitumor T-cell functions implicated in immunotherapy and the immune-stimulating effects of radiotherapy and chemotherapy needed for effective therapeutic responses point to a fatal flaw in the rationale to develop mTOR inhibitors as cancer therapy.

MOLECULAR AND CELLULAR PATHOBIOLOGY

3292
Activation-Induced Cytidine Deaminase Contributes to Pancreatic Tumorigenesis by Inducing Tumor-Related Gene Mutations
Yugo Sawai, Yuzo Kodama, Takahiro Shimizu, Yuji Ota, Takahisa Maruno, Yuji Eso, Akira Kurita, Masahiro Shiokawa, Yoshishita Tsuji, Norimitsu Uza, Yuko Matsumoto, Yoshiko Masui, Shinji Lemoto, Hiroyuki Marusawa, and Tsutomu Chiba
Précis: Transgenic mice that express the cytosine deaminase AID develop precancerous pancreatic lesions without the apparent involvement of oncogenes, offering a unique mouse model of pancreatic cancer to analyze mutations involved in later stages of pancreatic carcinogenesis.

3302
ITGB1 Is a Runx2 Transcriptional Target and Promotes Breast Cancer Bone Metastasis by Activating the TGFβ Signal Pathway
Xiao-Qing Li, Xin Du, Dong-Mei Li, Peng-Zhou Kong, Yan Sun, Pei-Fang Liu, Qing-Shan Wang, and Yu-Mei Peng
Précis: This study identifies a critical function for a little studied integrin β-like molecule in bone metastasis of breast cancer, a dismal feature of advanced disease that is presently untreatable, with implications for clinical biomarker and therapeutic targeting studies.

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

3314
Pharmacological Ascorbate Radiosensitizes Pancreatic Cancer
Précis: These striking findings offer a preclinical proof of concept for the parenteral delivery of pharmacological ascorbate (high levels of vitamin C) as a simple, safe, and effective radiosensitizer for pancreatic cancer treatment, with immediate implications for clinical evaluation.

3327
Proteolysis of EphA2 Converts It from a Tumor Suppressor to an Oncoprotein
Naohiko Koshikawa, Daisuke Hoshino, Hiroaki Taniguchi, Tomoko Minegishi, Taizo Tomari, Sung-Ouk Nam, Mikiko Aoki, Takayuki Sueta, Takashi Nakagawa, Shingo Miyamoto, Kazuki Nabeshima, Alissa M. Weaver, and Motoharu Seiki
Précis: This important study sheds light on long-standing questions about the basis for the paradoxical actions of EphA2 in tumor progression.

3340
Naturally Occurring Mutations in the MPS1 Gene Predispose Cells to Kinase Inhibitor Drug Resistance
Précis: This study defines resistance mechanisms that may arise to a new class of cell-cycle checkpoint inhibitors being developed as cancer therapy—important during the early stages of drug development for several reasons—but it also reports an unexpected finding that many drug resistance mutations might be found in some normal and malignant cells even before drug treatment has started.

3355
Therapeutic Targeting of the Warburg Effect in Pancreatic Cancer Relies on an Absence of p53 Function
N.V. Rajeshklumar, Prasanta Dutta, Shinichi Yabuuchi, Roeland F. de Wilde, Gary V. Martinez, Anne Le, Jurre J. Kamphorst, Joshua D. Rabinowitz, Sanjay K. Jain, Manuel Hidalgo, Chi V. Dang, Robert J. Gillies, and Anirban Maitra
Précis: The p53 status of a tumor may be a major factor in determining an efficacious response to inhibitors of lactate dehydrogenase, as a strategy to target the Warburg effect in solid tumors.
A Polymer-Based Antibody–Vinca Drug Conjugate Platform: Characterization and Preclinical Efficacy

Alexander V. Yurkovetskiy, Mao Yin, Natalya Bodyak, Cheri A. Stevenson, Joshua D. Thomas, Charles E. Hammond, Liuliang Qin, Bangmin Zhu, Dmitry R. Gumerov, Elena Ter-Ovanesyan, Alex Uttard, and Timothy B. Lowinger

Précis: This study shows how efficacious antibody-drug conjugates can be prepared based on a novel, polymer-based conjugation approach that overcomes physicochemical limitations, enabling higher drug-antibody ratios and therefore uses for less potent drug payloads.

Depleting MET-Expressing Tumor Cells by ADCC Provides a Therapeutic Advantage over Inhibiting HGF/MET Signaling

Anna Hultberg, Virginia Morello, Leander Huyghe, Natalie De Jonge, Christophe Blanchetot, Valerie Hansens, Gitte De Boeck, Karen Silence, Els Festjens, Raimond Heukers, Benjamin Roux, Fabienne Lamballe, Christophe Ginestier, Emmanuelle Charafe-Jauffret, Flavio Maina, Peter Brouckeaert, Michael Saunders, Alain Thibault, Torsten Dreier, Hans de Haard, and Paolo Michieli

Précis: These findings offer evidence that killing MET-expressing cancer cells by ADCC is therapeutically more advantageous than simply inhibiting HGF/MET-signaling, based on studies of a novel ADCC-enhanced anti-MET antibody entering clinical development.

Oncogenic G Protein GNAQ Induces Uveal Melanoma and Intravasation in Mice

Jenny Li-Ying Huang, Ying-Jhen Su, Michael Hsiao, Kuo-Chen Wei, Wei-Hsin Lin, Chi-Jung Jiang, Shin-Cheh Chen, and Jia-Lin Lee

Précis: This study reports the first transgenic mouse model of uveal melanoma, one of the most aggressive cancers, which will be useful for developing in vivo understanding of etiology and metastatic progression of this disease.

Diverse Targets of β-Catenin during the Epithelial–Mesenchymal Transition Define Cancer Stem Cells and Predict Disease Relapse

Yi-Wen Chang, Oscar Urtatiz, and Catherine D. Van Raamsdonk

Précis: In discovering that Wnt signaling must accompany the epithelial-mesenchymal transition to generate cancer stem-like cells, this study defines a five-gene signature for these cells that may be a valuable prognostic marker in lung cancer patients.

PML/RARα-Regulated miR-181a/b Cluster Targets the Tumor Suppressor RASSF1A in Acute Promyelocytic Leukemia

Daniela Bräuer-Hartmann, Jens-Uwe Hartmann, Alexander Arthur Wurm, Dennis Gerloff, Christiane Katzerke, Maria Vittoria Verga Falzacappa, Pier Giuseppe Pellici, Carsten Müller-Tidow, Daniel G. Tenen, Dietger Niederwieser, and Gerhard Behre

Précis: These findings identify a pivotal microRNA cluster and tumor suppressor gene as determinants of the outgrowth versus effective therapeutic control of acute promyelocytic leukemias.
ABOUT THE COVER

Radiation-induced gastrointestinal toxicity is highly relevant to the treatment of pancreatic cancer with radiation. To determine if pharmacological ascorbate changes the response of the gastrointestinal tract following radiation in a clinically meaningful way, a crypt cell assay was performed. The addition of pharmacological ascorbate partially reversed the decreases in jejunal crypt regeneration in both the 10 Gy and 13 Gy groups of mice, suggesting that ascorbate may protect the gastrointestinal tract from the damaging effects of radiation. For details, see article by Du and colleagues on page 3314.
Cancer Research

75 (16)

Cancer Res 2015;75:3193-3424.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/75/16

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.