<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3425</td>
<td>Highlights from Recent Cancer Literature</td>
<td></td>
</tr>
<tr>
<td>3427</td>
<td>Prodding the Beast: Assessing the Impact of Treatment-Induced Metastasis</td>
<td>John M.L. Ebos</td>
</tr>
<tr>
<td>3436</td>
<td>Ligand-Independent EGFR Signaling</td>
<td>Gao Gao, Ke Gong, Bryan Wohlfeld, Kimmo J. Hatangaa, Dawen Zhao, and Amyn A. Habib</td>
</tr>
<tr>
<td>3442</td>
<td>Stem Cell Transfusion Restores Immune Function in Radiation-Induced Lymphopenic C57BL/6 Mice</td>
<td>Vaishali Kapoor, Arpine Khudanyan, Pilar de la Puente, Jian Campian, Dennis E. Hallahan, Abdel Kareem Azab, and Dinesh Thotala</td>
</tr>
<tr>
<td>3456</td>
<td>Immunosuppressive and Prometastatic Functions of Myeloid-Derived Suppressive Cells Rely upon Education from Tumor-Associated B Cells</td>
<td>Monica Bodogai, Kanako Moritoh, Catalina Lee-Chang, Christine M. Hollander, Cheryl A. Sherman-Baust, Robert P. Wersto, Yoshihiko Araki, Ichiro Miyoshi, Li Yang, Giorgio Trinchieri, and Arya Biragyn</td>
</tr>
<tr>
<td>3466</td>
<td>Nivolumab and Urelumab Enhance Antitumor Activity of Human T Lymphocytes Engrafted in Rag2⁻/⁻/IL2Rγnull Immunodeficient Mice</td>
<td>Miguel F. Sammamed, Inmaculada Rodriguez, Kurt A. Schalper, Carmen Ortate, Arantza Apilikueta, Maria E. Rodriguez-Ruiz, Aizea Morales-Rastresana, Sara Labiano, Jose L. Pérez-Gracia, Salvador Martín-Algarra, Carlos Alfaro, Guillermo Mazzolini, Francesca Sarno, Manuel Hidalgo, Alan J. Korman, Maria Jure-Kunkel, and Ignacio Melero</td>
</tr>
<tr>
<td>3479</td>
<td>Perivascular M2 Macrophages Stimulate Tumor Relapse after Chemotherapy</td>
<td>Russell Hughes, Bin-Zhi Qian, Charlotte Rowan, Munita Muthana, Joana Kekikoglou, Oakley C. Olson, Simon Tazzyman, Sarah Danson, Christina Addison, Mark Clemons, Ana Maria Gonzalez-Angulo, Johanna A. Joyce, Michele De Palma, Jeffrey W. Pollard, and Claire E. Lewis</td>
</tr>
</tbody>
</table>

Précis:

- **Immunosuppressive and Prometastatic Functions of Myeloid-Derived Suppressive Cells Rely upon Education from Tumor-Associated B Cells:** These findings rationalize a strategy to leverage chemotherapeutic efficacy by selectively targeting perivascular, relapse-promoting macrophages.
AIP1 Expression in Tumor Niche Suppresses Tumor Progression and Metastasis
Weidong Ji, Yonghao Li, Yun He, Mingzhu Yin, Huanjiao Jenny Zhou, Titus J. Boggon, Hai Feng Zhang, and Wang Min

Précis: Expression of the suppressor gene AIP1 in the microenvironment of a premetastatic niche is found to suppress EMT, angiogenesis, and metastatic progression, illustrating a role for tumor suppression genes not only in tumor cells but also stromal cells of the tumor microenvironment.

Tuning Sensitivity of CAR to EGFR Density Limits Recognition of Normal Tissue While Maintaining Potent Antitumor Activity
Hillary G. Caruso, Lenka V. Hurton, Amer Najjar, David Rushworth, Sonny Ang, Simon Olivares, Tie Juan Mi, Kirsten Switzer, Harjeet Singh, Helen Huls, Dean A. Lee, Amy B. Heimberger, Richard E. Champlin, and Laurence J.N. Cooper

Précis: A re-engineered CAR T-cell receptor decreases risks of on-target off-tissue toxicity by enabling preferential recognition of EGFR on the basis of its overexpressed levels in cancer.

CRMP5 Controls Glioblastoma Cell Proliferation and Survival through Notch-Dependent Signaling
Aubin Moutal, Jérôme Honnorat, Patrick Massoma, Pauline Désormeaux, Caroline Bertrand, Céline Mallevial, Chantal Watrin, Nauru Choulamountri, Marie-Eve Mayeur, Roger Besangon, Nicolas Naudet, Léa Magadoux, Rajesh Khanna, François Ducray, David Meyronet, and Nicole Thomasset

Précis: This study offers insights into glioblastoma proliferation controlled by the Notch receptor, highlighting a new biomarker for pretherapeutic screening or follow-up programs.

Pancreatic Cancer Cell Migration and Metastasis Is Regulated by Chemokine-Biased Agonism and Bioenergetic Signaling
Ishan Roy, Donna M. McAllister, Egal Gorse, Kate Dixon, Clinton T. Piper, Noah P. Zimmerman, Anthony E. Getschman, Susan Tsai, Dannielle D. Engle, Douglas B. Evans, Brian F. Volkman, Balaraman Kalyanaraman, and Michael B. Dwinell

Précis: Provocative biological findings offer a preclinical rationale for further investigation of the promigratory chemokine CXCL12 for preventing metastasis in pancreatic cancer.

Defects in the Fanconi Anemia Pathway and Chromatid Cohesion in Head and Neck Cancer

Précis: Defects defined in a subset of head and neck cancers might be exploited for targeted treatments in a therapeutic setting of rapidly rising incidence.

ErbB3–ErbB2 Complexes as a Therapeutic Target in a Subset of Wild-type BRAF/NRAS Cutaneous Melanomas
Claudia Capparelli, Sheera Rosenbaum, Lisa D. Berman-Booty, Amel Salhi, Nadège Gaborit, Tingting Zhan, Inna Chervoneva, Jason Roszik, Scott E. Woodman, Michael A. Davies, Yulius Y. Setiady, Iman Osman, Yosef Yarden, and Andrew E. Aplin

Précis: This study addresses the lack of effective targeted therapeutic options for BRAF/NRAS wild-type melanomas, offering a preclinical basis for new treatment strategies in a subset of these melanomas.

Novel Cancer Therapeutics with Allosteric Modulation of the Mitochondrial C-Raf–DAPK Complex by Raf Inhibitor Combination Therapy

Précis: These findings suggest a novel predictive biomarker for responses to combination therapy with Raf kinase inhibitors, which have a variety of antimitabolic and immune modulatory effects beyond the inhibition of growth and survival in cancer cells.
CHK1 Inhibition Synergizes with Gemcitabine Initially by Destabilizing the DNA Replication Apparatus

Siang-Boon Koh, Aurélie Courtin, Richard J. Boyce, Robert G. Boyle, Frances M. Richards, and Duncan I. Jodrell

Précis: This work informs how cell cycle checkpoint kinase inhibitors cooperate with DNA damaging drugs, finding that cancer cells are destroyed not by frank G2-M phase abrogation, as has been hypothesized widely, but rather by promoting a cumulative genotoxicity that deregulates DNA synthesis.

Affinity-Tuned ErbB2 or EGFR Chimeric Antigen Receptor T Cells Exhibit an Increased Therapeutic Index against Tumors in Mice

Xiaojun Liu, Shuguang Jiang, Chongyun Fang, Shiyu Yang, Devvora Olalere, Edward C. Pequignot, Alexandria P. Cogdill, Na Li, Melissa Ramones, Brian Grande, Li Zhou, Andreas Loew, Regina M. Young, Carl H. June, and Yangbing Zhao

Précis: A newly engineered CAR T-cell receptor can better discriminate therapeutic targets in normal versus tumor tissues, potentially expanding the utility of this adoptive cell therapy for cancer.

IL6/JAK1/STAT3 Signaling Blockade in Endometrial Cancer Affects the ALDHhi/CD126 Stem-like Component and Reduces Tumor Burden

Marten van der Zee, Andrea Sacchetti, Medine Cansoy, Rosalie Joosten, Miranda Teenwesen, Claudia Heijmans-Antonissen, Patricia C. Ewing-Graham, Curt W. Burger, Leen J. Blok, and Riccardo Fodde

Précis: These results provide a preclinical rationale to target IL6 or its downstream effector functions as a novel therapeutic option in endometrial cancer, with immediate potential implications for a clinical evaluation of IL6-blocking antibodies or JAK inhibitors in this setting.

RAS/MAPK Activation Drives Resistance to Smo Inhibition, Metastasis, and Tumor Evolution in Shh Pathway–Dependent Tumors

Xuesong Zhao, Tatyan Ponmorayov, Kimberly J. Ornell, Pengcheng Zhou, Sukriti K. Dabral, Ekaterina Pak, Wei Li, Scott X. Atwood, Ramon J. Whiston, Anne Lynn S. Chang, Jiang Li, Anthony E. Oro, Jennifer A. Chan, Joseph F. Kelleher, and Rosalind A. Segal

Précis: These findings point to a significant role for RAS/MAPK pathway alterations in acquired drug resistance and tumor evolution of Sonic Hedgehog pathway-driven cancers.

Microenvironment-Modulated Metastatic CD133+/CXCR4+/EpCAM+ Lung Cancer–Initiating Cells Sustain Tumor Dissemination and Correlate with Poor Prognosis

Giulia Bertolini, Lucia D’Amico, Massimo Moro, Elena Landoni, Paola Perego, Rosalba Miceli, Laura Gatti, Francesca Andriani, Donald Wong, Roberto Caserini, Monica Tortoreto, Massimo Milione, Riccardo Ferracini, Luigi Mariani, Ugo Pastorino, Ilaria Roato, Gabriella Sozzi, and Luca Roz

Précis: These results highlight the CXCR4 signaling axis as a target for disrupting the development of chemotherapy-resistant cells in the metastatic niche, suggesting an effective therapeutic strategy to improve the clinical management of lung cancer patients.

Keratin-17 Promotes p27KIP1 Nuclear Export and Degradation and Offers Potential Prognostic Utility

Luisa F. Escobar-Hoyos, Ruchi Shah, Lucia Roa-Peña, Elizabeth A. Vanner, Nilofar Najafian, Anna Banach, Erik Nielsen, Ramsey Al-Khalil, Ali Akalin, David Talmage, and Kenneth R. Shroyer

Précis: This important study establishes that keratin-17 functions specially among keratins as an oncoprotein by controlling the ability of the tumor suppressor p27KIP1 to influence cervical cancer pathogenesis.

Androgen Receptor Splice Variants Dimerize to Transactivate Target Genes

Duo Xu, Yang Zhan, Yanfeng Qi, Bo Cao, Shanshan Bai, Wei Xu, Sanjiv S. Gambhir, Peng Lee, Oliver Sartor, Erik K. Flemington, Haitao Zhang, Chang Deng Hu, and Yan Dong

Précis: These results clarify how variant splice forms of the androgen receptor function to drive the malignant character of advanced prostate cancer, providing key mechanistic insights that will promote rational drug design for more effective treatment of this deadly disease.
Epigenetic Activation of TWIST1 by MTDH Promotes Cancer Stem–like Cell Traits in Breast Cancer
Yajun Liang, Jing Hu, Jiatao Li, Yingjie Liu, Jingyi Yu, Xueqian Zhuang, Lili Mu, Xiangyi Kong, Dengli Hong, Qifeng Yang, and Guohong Hu

Précis: A prometastatic molecule of uncertain molecular function, known as metadherin, AEG-1, or LYRIC, is found to control a transcriptional program driven by TWIST, which regulates epithelial-mesenchyme transition in cancer cells.

LETTERS TO THE EDITOR

Cell Death Identification in Anticancer Therapy—Letter
J. Martin Brown, Bradly G. Wouters, and David G. Kirsch

CORRECTIONS

Correction: Long Noncoding RNA GAPLINC Regulates CD44-Dependent Cell Invasiveness and Associates with Poor Prognosis of Gastric Cancer

Correction: Host Immune Defense Peptide LL-37 Activates Caspase-Independent Apoptosis and Suppresses Colon Cancer

ABOUT THE COVER

Combination immunotherapy with anti-hCD137 (urelumab) and anti-hPD-1 (nivolumab) monoclonal antibodies (mAb) in a humanized mouse model enhances the human T-cell infiltrate in xenografted tumors. Using multiplexed quantitative immunofluorescence, we profiled T- and B-cells in the tumor microenvironment. In immunodeficient Rag2−/− Il2rg−/− mice subcutaneously bearing human gastric carcinoma and transferred with peripheral blood mononuclear cells from the same patient, urelumab and nivolumab increased the T-cell infiltrates that were penetrating into the tumor. The presence of T lymphocytes was associated with slow tumor progression. In contrast, tumor-infiltrating lymphocytes (TILs) were restricted to the tumor periphery when treatment consisted of control hIgG4 mAb or either urelumab or nivolumab as single agents. The combination of urelumab and nivolumab seems to help overcome a peripheral barrier so TILs can enter the tumor core. For details, see article by Sanmamed and colleagues on page 3466.