Real-time Imaging of the Resection Bed Using a Handheld Probe to Reduce Incidence of Microscopic Positive Margins in Cancer Surgery

Sarah J. Erickson-Bhatt1, Ryan M. Nolan1, Nathan D. Shemonski2, Steven G. Adie1, Jeffrey Putney3, Donald Darga3, Daniel T. McCormick4, Andrew J. Cittadine3, Adam M. Zysk3, Marina Marjanovic1, Eric J. Chaney4, Guillermo L. Monroy5, Fredrick A. South2, Kimberly A. Cradock6, Z. George Liu6, Magesh Sundaram6,7, Partha S. Ray6,7, and Stephen A. Boppart1,2,3,5,6

Abstract

Wide local excision (WLE) is a common surgical intervention for solid tumors such as those in melanoma, breast, pancreatic, and gastrointestinal cancer. However, adequate margin assessment during WLE remains a significant challenge, resulting in surgical reinterventions to achieve adequate local control. Currently, no label-free imaging method is available for surgeons to examine the resection bed in vivo for microscopic residual cancer. Optical coherence tomography (OCT) enables real-time high-resolution imaging of tissue microstructure. Previous studies have demonstrated that OCT analysis of excised tissue specimens can distinguish between normal and cancerous tissues by identifying the heterogeneous and disorganized microscopic tissue structures indicative of malignancy. In this translational study involving 35 patients, a handheld surgical OCT imaging probe was developed for in vivo use to assess margins both in the resection bed and on excised specimens for the microscopic presence of cancer. The image results from OCT showed structural differences between normal and cancerous tissue within the resection bed following WLE of the human breast. The in vivo images were compared with standard postoperative histopathology to yield sensitivity of 91.7% [95% confidence interval (CI), 62.5%-100%] and specificity of 92.1% (95% CI, 78.4%-98%). This study demonstrates in vivo OCT imaging of the resection bed during WLE with the potential for real-time microscopic image-guided surgery.

Introduction

Wide local excision (WLE) is commonly performed in the surgical treatment of many solid tumors, with the goal to achieve local disease control by removing the primary tumor along with a surrounding rim of additional tissue. To minimize the physical and psychological morbidity associated with surgery, the smallest possible amount of normal tissue must be removed, while still ensuring that the tumor tissue is completely excised (1). Failure to excise all tumor tissue, as determined during conventional postoperative histopathology assessment of excised specimens, may require reintervention to remove additional tissue.

Standard-of-care WLE specimen evaluation includes the surgeon’s estimate of tumor size based on preoperative radiologic images (e.g., ultrasound, MRI, CT) to plan the extent of resection, and intraoperative visual, tactile, and radiographic specimen evaluation, as well as postoperative gross and histologic analysis, which can typically require several days. Additional methods for intraoperative assessment of tumor margins include frozen section (2) and touch-prep cytology (3) of the resected ex vivo specimen; however, these are infrequently used as they significantly extend surgery time, require real-time coordination with pathologists, and/or are highly operator dependent (4). It is also challenging to spatially correlate the analyzed regions on excised specimens with the corresponding locations in the resection bed (5). As the currently available tools are limited, there is a compelling need to improve upon these existing intraoperative methods to enable real-time microscopic detection of residual disease both within the resection bed and on resected specimens.

To address this need, we introduce in vivo label-free video-based imaging of the WLE resection bed. A unique custom-designed handheld imaging probe integrated with a custom-built portable optical coherence tomography (OCT) system (Fig. 1) is used for in vivo imaging during WLE in the human breast. OCT is a high-resolution label-free imaging technique that is analogous to...
ultrasound imaging, but offers resolutions that are 1 to 2 orders of magnitude higher. OCT relies on the use of near-infrared light instead of sound to image biological tissues with micrometer-scale (10⁻³ m) resolution, comparable with low-magnification histology, at depths up to 2 mm in dense tissue (6). OCT has previously been used to image ex vivo tissue specimens for differentiation between normal and cancerous tissue (6–14), and a portable OCT system has been used for intraoperative imaging of ex vivo breast specimen margins and lymph nodes (8, 9, 10).

Several systems have been developed for label-free intraoperative assessment of excised breast specimens. By measuring the local electrical properties of breast tissue from a 7-mm diameter region, a handheld probe (MarginProbe, Dune Medical) applied to the surface of the excised tissue provides a positive or negative reading at each probe location (15). A quantitative diffuse reflectance imaging (QDRI) instrument measures diffuse reflectance spectra from eight discrete sites during each acquisition in breast tumor specimens (16). Fresh excised breast tumor specimens have also been rapidly imaged using confocal mosaicking microscopy (17). Finally, ex vivo breast cancer tumor margins have been imaged using OCT needle probes (12) and full-field OCT (14).

Although these technologies are capable of assessing excised specimens, they have not been demonstrated for in vivo imaging in the resection bed. Ideally, both the ex vivo specimen and the WLE resection bed assessments should be performed during the surgical procedure, in real time, to best enable the surgeon to immediately decide whether further tissue excision is required. This would likely improve oncological outcomes without having to resort to a second “take back” surgical procedure. The MarginProbes and QDRI instruments are also not able to provide quantitative depth-resolved tumor tissue information, potentially making adherence to margin depth guidelines (18) difficult. Furthermore, the unmet need for resection bed assessment methods is compounded by the challenges associated with existing point-by-point tissue assessment techniques or those with slow data acquisition rates, as these cannot be used practically to image the entire surface area of a surgical specimen while maintaining the high resolution needed to identify microscopic margin involvement. Most critically, none of these systems have been demonstrated for in vivo assessment of the WLE resection bed.

New label-free imaging methods such as OCT are often preferred for in vivo assessment because the regulatory path for translation to clinical use can potentially be shorter. Label-free imaging methods also avoid the risks associated with dye/drug reactions and the challenges associated with specific tumor targeting and nonspecific binding. Several studies, however, have investigated the use of i.v. injected (19) or topically applied (20) fluorescent dyes to discriminate tumor from normal tissue in wide-field optical fluorescence imaging. These methods, however, are more costly, require switching off room lighting to maximize detection of the weak fluorescence, and do not provide visualization of cellular features on the micrometer scale.

In contrast with other methods that are restricted to time-consuming point-by-point analysis, the handheld OCT probe system presented here provides a transverse scan range of 8.8 mm and an imaging rate of 11.5 frames per second. The handheld probe tip, which is placed in light contact with tissue, can be manually swept over tissue surfaces to perform depth-resolved cross-sectional imaging over large tissue surfaces, where the images are captured as videos in a manner similar to that of an ultrasound probe. This method enables the surgeon to rapidly visualize and microscopically assess the entire resection bed in addition to the excised specimens. In this work, we demonstrate assessment of the resection bed immediately following primary breast tumor mass removal for the identification of residual in vivo tumor tissue.

Materials and Methods

Optical coherence tomography system

A portable custom-designed spectral-domain OCT system was developed to be easily maneuvered into the operating room and positioned close to the surgical field for real-time imaging of the in vivo resection bed during the primary WLE procedure. The OCT system (Fig. 1) used a superluminescent diode source (Praevium Research, Inc.; 1,330-nm center wavelength, 105 nm bandwidth) and a 50/50 fiber coupler to split light between the sample arm (the handheld surgical probe) and the reference arm. The
reflected light was detected by a spectrometer and the 2D OCT images (B-scans) were displayed on the computer screen with axial and transverse resolutions of approximately 9 μm, an image width of 8.8 mm, and a frame rate of 11.5 frames/s. The laser power on the tissue was less than 10 mW. Images were collected as a video of frames as the probe was swept across the tissue. The custom-designed probe was draped with two sterile sheaths before it was used for in vivo imaging of the resection bed.

Imaging study protocol

In this study, the portable OCT system and handheld probe were used to image 35 patients undergoing WLE (22 patients, including both primary and reexcision procedures) or mastectomy (13 patients) for biopsy-proven invasive and/or in situ breast carcinoma (see Table 1 for a summary of patient clinicopathological data) under protocols approved by the Institutional Review Boards at the University of Illinois at Urbana-Champaign and Carle Foundation Hospital (Urbana, IL). Written informed consent for this Institutional Review Board-approved study was obtained from all human subjects. Real-time videos and images of OCT data were acquired from both the in vivo resection bed and the excised tissue specimens in the operating room immediately following excision of the primary WLE specimen(s). For this study, the surgeons used their standard protocol for intraoperative assessment of margin adequacy and remained blinded to the results of data analysis. OCT data were not used for clinical decision making.

The surgical procedures were performed at Carle Foundation Hospital using the following protocol. (i) The surgeon excised the primary WLE specimen and determined whether excision of additional tissue was necessary via palpation, visual inspection, and, optionally, specimen radiography. (ii) The surgeon used the handheld OCT probe to sweep across the six aspects (posterior, anterior, superior, inferior, medial, and lateral) of the in vivo resection bed, collecting real-time video-based OCT images. (iii) The surgeon optionally excised additional tissue as a result of the intraoperative standard-of-care margin analysis in step 1. OCT data were not used for interventional decision making. (iv) If additional tissue was excised, the surgeon used the handheld OCT probe to image the new aspect(s) of the resection bed. (v) All excised tissue specimens were evaluated with the handheld OCT probe in the operating room by the research staff. (vi) Specimens were marked with dye at the OCT imaging sites for correlation and returned to the operating room staff for routine histopathologic examination by a board-certified pathologist.

Image analysis

The OCT images were visually analyzed to assess the tissue composition and presence/absence of cancer. Structural features in the OCT images were distinguished by differences in scattering.
intensity in the OCT images (8). Low sparse scattering, which forms a relatively uniform “honeycomb” structure, is characteristic of normal adipose (fatty) tissue. Banded and fibrous structures indicate normal stromal tissue and collagen. Heterogeneous dense, high-scattering patterns and irregular disruption in the structure indicate tissue that is suspicious for malignancy.

Statistical analysis
A blinded reader study was performed to evaluate the statistical performance of the OCT imaging system in assessing tumor margins. Fifty OCT images from 21 patients were analyzed by 5 trained OCT readers who were blinded to whether the image contained cancer or not. The readers were given a training set of sample OCT images showing normal adipose and stromal breast tissue as well as images portraying cancerous features. The corresponding histology images from the same tissue locations were independently analyzed by a trained pathologist who determined that 12 of the images contained cancer and 38 of the images were not cancerous. To assess intrareader variability, a duplicate set of the 50 images were reversed (left to right) and the total 100 images were randomly arranged. Each image was viewed separately in a slide show, and readers were instructed to view and assess the images sequentially and not go back to review previous images. The images were scored on a scale of 1 to 4 as follows: (i) a score of 1 means that the reader is confident the image is negative for cancer; (ii) a score of 2 means that reader thinks that the image is likely negative for cancer, but there is some doubt; (iii) a score of 3 means that the reader thinks that cancer is likely present, but there is some doubt; (iv) a score of 4 means that the reader is confident the image is positive for cancer.

Results
In vivo OCT imaging of the surgical tumor bed
Of the 22 WLE patients that were imaged for this study, 3 were found to have positive or “very close” margins (0–1 mm) on histological analysis and another 10 were found to have cancer within 1 to 3 mm of the margin. None of the mastectomy patients were found to have positive margins. Imaging results from two representative cases are shown below.

The OCT and histopathology results from the first representative case: a 72-year-old woman undergoing WLE for biopsy-proven invasive ductal carcinoma of the left breast are shown in Fig. 2. After excision of the primary WLE specimen, OCT videos and images were acquired from all six aspects of the resection bed by the surgeon using the handheld OCT probe. OCT imaging of the lateral aspect of the resection bed, of which one image is shown in Fig. 2A, suggested a positive margin based on the microscopic architecture and scattering features present within the video data, which was confirmed as ductal carcinoma in situ on postoperative histological examination. Within the same surgery, an additional lateral margin specimen was removed and the surgeon again used the handheld probe to acquire OCT video images within the resection bed. OCT imaging of the
Additional superior margin

Figure 3.
Video OCT cross-sectional images of a negative tumor margin from the in vivo resection bed and ex vivo excised tissue. Images are from a 56-year-old female WLE patient with invasive ductal carcinoma in the left breast. Diagrams on the left indicate the imaged regions (dashed boxes) of the resection bed or excised specimen (not to scale), and the solid black lines in the black dashed boxes indicate the top of the corresponding OCT image. The blue dashed regions all correspond to areas identified as normal. A, OCT image of the negative in vivo superior tumor margin. B, OCT image of the negative ex vivo superior specimen margin, with corresponding histology. C, OCT image of the negative additional ex vivo superior margin tissue (same tissue as imaged in vivo in A), with corresponding histology. D, OCT image of the final negative in vivo superior margin. Areas of interest are magnified and shown in the insets to compare the normal stroma and adipose regions. The top right of the image in A is obscured by a complex conjugate artifact (arrow). Note that histology images are only provided for the corresponding OCT images in B and C, because the images in A and D were acquired in vivo and hence do not have histology images to compare.

Statistical analysis
The results of the blinded reader analysis are summarized in Table 2, showing the sensitivity and specificity with 95% confidence intervals (CI), positive predictive value (PPV), negative predictive value (NPV), and accuracy. The images were declared negative if given a score of 1 and positive/suspicious if given a score of 2, 3, or 4. This represents a division of the responses by declaring the image as positive if there is any level of suspicion of cancer (a score of 2, 3, or 4) and declaring the image as negative only if the reader was fully confident that there was no cancer in the image (a score of 1), which represents the clinical scenario where any margin considered "suspicious" (i.e., not fully confident to be negative) would subsequently be removed and the region would be reimaged to determine whether it is clear. The table lists the statistics for the individual readers as well as a "majority vote" where the image is declared positive or negative if at least 3 of 5 readers gave a response of positive or negative, respectively. The statistical results are calculated from the 50 unique images (with duplicates removed). Overall, the analysis resulted in sensitivity of 91.7% (95% CI, 62.5%–100%) and specificity of 92.1% (95% CI, 78.4%–98%). Intrareader analysis
(including duplicates) showed that of a total of 250 scoring sets (5 readers, 50 sets of images), there were 41 sets where a reader assigned different scores to the duplicates images and 11 (of the 41) cases where a reader switched from a score leaning toward negative (1 or 2) to a score leaning toward positive (3 or 4). Overall, the intrareader variability was low (16.4% and 0.04%, respectively).

Discussion

The results presented here show *in vivo* high-resolution label-free video-based imaging of the resection bed following WLE of the human breast. We have demonstrated that differences in the microstructural features of OCT images enable differentiation between normal and tumor tissue within the *in vivo* resection bed, and that these features correlate well with *ex vivo* OCT images and postoperative histopathology from the same regions. The OCT images in Figs. 2A and C are from the same tissue and site (the additional margin specimen) imaged *in vivo* (Fig. 2A) and *ex vivo* (Fig. 2C). The OCT image in Fig. 2B is from a different tissue (the primary tumor specimen) imaged *ex vivo*, which is the cross-border region (or “mirror image”) of the tissue imaged *in vivo*. Hence, some differences can be seen in Fig. 2B, which may be due to different tissue site or the extraction and handling during and following excision. Although exact correlation with histology is difficult due to tissue processing artifacts, distinct features indicative of positive tumor margins are evident in both OCT and histology images, and both correlate with and validate similar findings in prior studies (7, 8, 12). Moreover, OCT images of the *in vivo* resection bed correlate with the *ex vivo* cross-border regions of the same margin on the resected tumor bed. The primary focus of this study was to demonstrate *in vivo* OCT imaging of the surgical cavity during WLE. To perform a blinded reader study to assess OCT image quality can potentially be further improved using computational methods such as interferometric synthetic aperture microscopy (ISAM; refs. 21, 22), a computed real-time 3D microscopic image reconstruction technique, which addresses the inverse-scattering challenge in coherence microscopy. ISAM correction offers spatially invariant resolution throughout the imaged tissue volume, equivalent to that traditionally limited to the focal plane, and thereby eliminating the compromise between transverse resolution and depth-of-field (21, 22). ISAM-corrected OCT images of excised breast tumor tissue have shown meaningful structures at distances well outside the focal plane and normal depth-of-field (22), demonstrating the potential to further improve real-time *in vivo* imaging capabilities in the surgical setting.

The work demonstrates real-time label-free video-based imaging of the *in vivo* resection bed following WLE to detect microstructural changes characteristic of residual cancer. The incorporation of a custom-designed handheld OCT surgical probe places the technology in the surgeon’s hand for immediate assessment during the primary surgery. The ability to detect microstructural changes characteristic of residual cancer.
optically image label-free inside the tumor cavity and across the resection bed addresses the critical need for improved intraoperative detection of residual disease to ensure local control, and to potentially eliminate reinvention due to postoperative margin findings. Future work will involve OCT imaging of the in vivo resection bed during other surgical procedures such as for melanoma and pancreatic, gastrointestinal, and thyroid cancers.

Disclosure of Potential Conflicts of Interest

D. Darga is an employee and has ownership interest (including patents) in Diagnostic Photonics, Inc. A. Cittadino is a CEO and has ownership interest (including patents) in Diagnostic Photonics, Inc. A. Zysk has ownership interest in and patents from Diagnostic Photonics, Inc. A. Zysk also has patents from the University of Illinois. S. A. Boppart has ownership interest (including patents) and is a consultant/advisory board member for Diagnostic Photonics, Inc. A. Zysk also has patents from the University of Illinois. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, M. Marjanovic, K. A. Cradock, Z. G. Liu, P. S. Ray, S. A. Boppart

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S. J. Erickson-Bhatt, R. M. Nolan, S. G. Adie, M. Marjanovic, Z. G. Liu, M. Sundaram, P. S. Ray, S. A. Boppart

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): R. M. Nolan, J. Putney, D. Darga, A. J. Cittadino, A. M. Zysk

Study supervision: S. A. Boppart

Other (funded acquiring to conduct research): S. A. Boppart

Acknowledgments

The authors thank Darold Spillman for his operations and information technology support for this research and Doug Simpson for his helpful input on the statistical analysis of these results. They also thank Christine Canfield and the clinical research and surgical nursing staff at Carle Foundation Hospital for their contributions.

Grant Support

This research was supported in part by grants from the National Institutes of Health (1 R01 EB012479 and 1 R01 CA166309; S. A. Boppart). S. J. Erickson-Bhatt was supported by a Beckman Institute Fellowship.

Received February 13, 2015; revised June 17, 2015; accepted June 19, 2015; published online September 15, 2015.

References

Real-time Imaging of the Resection Bed Using a Handheld Probe to Reduce Incidence of Microscopic Positive Margins in Cancer Surgery

Updated version
Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/75/18/3706

Supplementary Material
Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2015/12/18/75.18.3706.DC1

Cited articles
This article cites 21 articles, 2 of which you can access for free at: http://cancerres.aacrjournals.org/content/75/18/3706.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.