BREWORKING ADVANCES

3995 Highlights from Recent Cancer Literature

REVIEWS

3997 The Stress Kinase p38 as a Target for Cancer Therapy
Ana Igea and Angel R. Nebreda

4003 Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations
Kiera Rycaj and Dean G. Tang

4012 The MYC–WDR5 Nexus and Cancer
Lance R. Thomas, Audra M. Foshage, April M. Weissmiller, and William P. Tansey

PERSPECTIVES

4016 Recommendations for Benchmarking Preclinical Studies of Nanomedicines
Charlene M. Dawidczyk, Luisa M. Russell, and Peter C. Searson

4021 Inferring the Origin of Metastases from Cancer Phylogenies
Woo Suk Hong, Max Shpak, and Jeffrey P. Townsend

PRIORITY REPORT

4026 Transcriptome Sequencing Reveals PCAT5 as a Novel ERG-Regulated Long Noncoding RNA in Prostate Cancer

PRÉCIS: This first transcriptome sequencing of castration-resistant prostate cancer reports the discovery of an long noncoding RNA that may offer a druggable target in ERG+ prostate cancers.

4032 High-Resolution Rapid Diagnostic Imaging of Whole Prostate Biopsies Using Video-Rate Fluorescence Structured Illumination Microscopy
Mei Wang, Hillary Z. Kimbrell, Andrew B. Sholl, David B. Tukman, Katherine N. Elfer, Tyler C. Schlichenmeyer, Benjamin R. Lee, Michelle Lacey, and J. Quincy Brown

PRÉCIS: This study describes the utility of a novel microscopic method for high-throughput, nondestructive pathologic imaging and diagnosis of malignant biopsy tissue, with the potential to replace current techniques and assess tissue quality and diagnosis at the point of acquisition.

INTEGRATED SYSTEMS AND TECHNOLOGIES

4042 A Modeling Approach to Explain Mutually Exclusive and Co-Occurring Genetic Alterations in Bladder Tumorigenesis
Elisabeth Benny, Sandra Rebouissou, Claudine Chaouiya, Andrei Zinovyev, François Radvanyi, and Laurence Calzone

PRÉCIS: This multidisciplinary study explains the basis for mutual exclusivity and co-occurring genetic alterations in bladder cancer through the use of a mathematical model that provides context and temporal orders for these alteration patterns.

4053 Implication of the Autologous Immune System in BCR–ABL Transcript Variations in Chronic Myelogenous Leukemia Patients Treated with Imatinib
Geoffrey D. Clapp, Thomas Lepoutre, Raouf El Cheikh, Samuel Bernard, Jérémy Ruby, Hélène Labussière-Wallet, Franck E. Nicolini, and Doron Levy

PRÉCIS: Variations in BCR-ABL transcripts during imatinib therapy may represent a signature of the patient’s individual autologous immune response, as modeled by a mathematical algorithm in this study that may help design patient-specific schedules for TKI combination therapy.
MICROENVIRONMENT AND IMMUNOLOGY

4063 Metastasis Suppressors Regulate the Tumor Microenvironment by Blocking Recruitment of Prometastatic Tumor-Associated Macrophages
Casey Frankenberger, Daniel Rabe, Russell Bainer, Devipriya Sankarasharma, Kiran Chada, Thomas Krause, Yoav Gilad, Lev Becker, and Marsha Rich Rosner
Précis: These findings suggest that ‘triple-negative’ breast cancer patients may benefit greatly from therapeutics that target tumor-associated macrophages, addressing a clinical need for effective targeted therapies in this setting.

4074 CD38-Expressing Myeloid-Derived Suppressor Cells Promote Tumor Growth in a Murine Model of Esophageal Cancer
Tatiana A. Karakasheva, Todd J. Waldron, Evgeniy Eruslanov, Sang-Bae Kim, Ju-Seog Lee, Shaun O'Brien, Philip D. Hicks, Devraj Basu, Sunil Singhal, Fabio Malavasi, and Anil K. Rustgi
Précis: This report highlights CD38 as a new marker of highly immunosuppressive MDSC as well as a candidate therapeutic target, addressing a long-standing need to more fully define functional biomarkers in this key myeloid cell population mediating immune escape.

4086 DLL4 Blockade in Stromal Cells Mediates Antitumor Effects in Preclinical Models of Ovarian Cancer
Frank Kuhnert, Guoying Chen, Sandra Coetzee, Nithya Thambi, Carlos Hickey, Jing Shan, Pavel Kovalenko, Irene Noguera-Troise, Eric Smith, Jeanette Fairhurst, Julian Andreev, Jessica R. Kirshner, Nicholas Papadopoulos, and Gavin Thurston
Précis: These findings establish a therapeutic rationale for antibody-based targeting of a Notch ligand in ovarian cancer, as an antiangiogenic strategy that is particularly potent in combination with VEGF blockade.

4097 Anti-CD20 Therapy Acts via FcγRIIIA to Diminish Responsiveness of Human Natural Killer Cells
Cristina Capuano, Maddalena Romanelli, Chiara Pighi, Giuseppe Cimino, Angela Rago, Rosa Molfetta, Rossella Paolini, Angela Santoni, and Ricciarda Galandrini
Précis: These findings define a novel mechanism of immune exhaustion caused by rituximab or related CD20 mAb in human natural killer cells, with potentially negative implications for patients treated with these therapies.

4109 Carbonic Anhydrase Activity Monitored In Vivo by Hyperpolarized 13C-Magnetic Resonance Spectroscopy Demonstrates Its Importance for pH Regulation in Tumors
Précis: An enzyme that is highly elevated in hypoxic conditions and that engenders metastatic progression is found to have a critical role for lowering extracellular pH, with potential implications as a therapeutic target in hypoxic conditions when tumors are typically resistant to therapy.

MOLECULAR AND CELLULAR PATHOBIOLOGY

4119 The miR-146b-3p/PAX8/NIS Regulatory Circuit Modulates the Differentiation Phenotype and Function of Thyroid Cells during Carcinogenesis
Garcilaso Riesco-Eizaguirre, León Wert-Lamas, Javier Perales-Patón, Ana Sastre-Perona, Lara P. Fernández, and Pilar Santisteban
Précis: These findings reveal that a microRNA network underlies thyroid cell differentiation and function, with important implications for overcoming treatment-refractory metastatic thyroid cancer.

4131 Hepatocyte Growth Factor/cMET Pathway Activation Enhances Cancer Hallmarks in Adrenocortical Carcinoma
Précis: These findings show that HGF/MET signaling enhances cancer hallmarks in adrenocortical carcinoma, where it may also contribute to drug resistance, with implications for the use of MET inhibitors as a clinical treatment strategy in this disease.

4143 HTLV-1 bZIP Factor RNA and Protein Impart Distinct Functions on T-cell Proliferation and Survival
Yuichi Mitobe, Jun-ichirou Yasunaga, Rie Funuta, and Masao Matsuoka
Précis: This study elucidates a central function in the human cancer virus HTLV-1 that enables it to efficiently promote leukemogenesis.
Akt Kinase-Interacting Protein 1 Signals

Feed-Forward Reciprocal Activation of PAFR and STAT3 Regulates Epithelial–Mesenchymal Transition in Non–Small Cell Lung Cancer

Identification of P450 Oxidoreductase as a Major Determinant of Sensitivity to Hypoxia-Activated Prodrugs

Characterization of Novel Factors Conferring Resistance to Topoisomerase II Poisons in Cancer

Ceacam1L Modulates STAT3 Signaling to Identity of P450 Oxidoreductase as a Major Determinant of Sensitivity to Hypoxia-Activated Prodrugs

Colon Cancer Growth and Dissemination

Cell Infiltration of Lymph Nodes in Chronic B Cell Lymphocytic Leukemia

Enhanced Chemokine Receptor Recycling and Impaired SIP1 Expression Promote Leukemic Cell Infiltration of Lymph Nodes in Chronic Lymphocytic Leukemia

TUMOR AND STEM CELL BIOLOGY

Small Cell Lung Cancer

Fibrinogen

Activated Prodrugs

Major Determinant of Sensitivity to Hypoxia-Activated Prodrugs

Recapitulates the Proliferation of Glioblastoma-Initiating Cells

Feeding the Proliferation of Glioblastoma-Initiating Cells

Colon cancers may exhibit a special reliance on hypoxic solid tumors.

These results elucidate a powerful mechanism of self-reinforcing malignant character in lung adenocarcinoma, driven by a tripartite G protein-coupled receptor that may offer an appealing therapeutic target.

These findings show how cell surface recycling dynamics controlled by endocytic processes account for high surface levels of CXCR4 and CCR7 in chronic B cell tumors, and how the targeted drug ibrutinib impacts this balance in achieving therapeutic responses.

These findings describe the characterization of a factor that appears to be critical for the response to a class of hypoxia-targeting drugs, with implications for improving the treatment of hypoxic solid tumors.

These results identify a role for a proangiogenic immunosuppressive cell adhesion protein in maintaining cancer stem-like cell functions in the most commonly deadly brain tumor.

These results identify an important role for the Aki1/CREB axis in the pathogenesis of diffuse malignant mesothelioma, a deadly lung cancer, and also offer a preclinical rationale to target Aki1 in this disease setting.

These results elucidate a powerful mechanism of self-reinforcing malignant character in lung adenocarcinoma, driven by a tripartite G protein-coupled receptor that may offer an appealing therapeutic target.

These results identify a role for a proangiogenic immunosuppressive cell adhesion protein in maintaining cancer stem-like cell functions in the most commonly deadly brain tumor.

These findings suggest an important role for the Aki1/CREB axis in the pathogenesis of diffuse malignant mesothelioma, a deadly lung cancer, and also offer a preclinical rationale to target Aki1 in this disease setting.

These results identify a role for a proangiogenic immunosuppressive cell adhesion protein in maintaining cancer stem-like cell functions in the most commonly deadly brain tumor.

These results identify a role for a proangiogenic immunosuppressive cell adhesion protein in maintaining cancer stem-like cell functions in the most commonly deadly brain tumor.
ABOUT THE COVER

DLL4-expressing endothelial cells activate Notch1 on adjacent ovarian tumor cells. Immunohistochemical staining for active Notch1 (nuclear Notch1 intracellular domain) and the tumor cell marker vimentin demonstrates Notch1 signaling activity in the tumor vasculature (elongated nuclei) and in vimentin-positive, tumor vessel-associated parenchymal cells. This pattern illustrates the important concept of juxtacrine signaling interactions between DLL4 expressed by endothelial cells and adjacent, Notch1-positive ovarian tumor cells. For details, see article by Kuhnert and colleagues on page 4086.
Cancer Research


75 (19)

Cancer Res 2015;75:3995-4243.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/75/19

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.