Table of Contents

Breaking Advances
- **241** Highlights from Recent Cancer Literature

Obituary
- **243** Emmanuel Farber: In Memoriam (1918–2014)
 Ezio Laconi, Richard G. Hegele, Michael W. Lieberman, Rajalakshmi Srinivasan, and Sarma S.R. Dittakavi

Reviews
- **245** Colorectal Cancer Heterogeneity and Targeted Therapy: A Case for Molecular Disease Subtypes
 Janneke F. Linnekamp, Xin Wang, Jan Paul Medema, and Louis Vermeulen
- **250** Targeting the eIF4F Translation Initiation Complex: A Critical Nexus for Cancer Development
 Jerry Pelletier, Jeremy Graff, Davide Ruggero, and Nahum Sonenberg

Priority Reports
- **264** Whole-Exome Sequencing Reveals Frequent Genetic Alterations in BAP1, NF2, CDKN2A, and CUL1 in Malignant Pleural Mesothelioma
 Guangwu Guo, Juliann Chmielecki, Chandra Goparaju, Adriana Heguy, Igor Dolgalev, Michele Carbone, Sara Seepo, Matthew Meyerson, and Harvey I. Pass
 Précis: This is the first unbiased view of the molecular basis of mesothelioma, revealing frequent genetic alterations that will offer a valuable foundation for biologic studies.
- **270** Breast Cancer Risk in Metabolically Healthy but Overweight Postmenopausal Women
 Marc J. Gunter, Xianhong Xie, Xiaoman Xue, Geoffrey C. Kabat, Thomas E. Rohan, Sylvia Wasserman-Smoller, Gloria Y.F. Ho, Judith Wyllie-Rosett, Theresa Greco, Herbert Yu, Jeannette Beasley, and Howard D. Strickler
 Précis: These provocative results demonstrate that metabolic health as defined by insulin resistance may be more relevant for breast cancer risk than obesity per se.

Microenvironment and Immunology
- **275** 1-Arginine Depletion Blunts Antitumor T-cell Responses by Inducing Myeloid-Derived Suppressor Cells
 Matthew Fletcher, Maria E. Ramirez, Rosa A. Sierra, Patrick Raber, Paul Thevenot, Amir A. Al-Khami, Dulfay Sanchez-Pino, Claudia Hernandez, Dorota D. Wyczechowska, Augusto C. Ochoa, and Paulo C. Rodriguez
 Précis: These results suggest the need for caution in clinical development of peglated forms of the arginine catabolizing enzyme Arginase I as a cancer therapy based on its ability to promote accumulation of myeloid-derived suppressor cells that harm antitumor immune responses and potentially worsen clinical outcomes.
- **284** Snail1-Expressing Fibroblasts in the Tumor Microenvironment Display Mechanical Properties That Support Metastasis
 Jelena Stanisavljevic, Jordina Loubat-Casanovas, Mercedes Herrera, Tomás Luque, Raúl Peña, Ana Lluch, Joan Albanell, Félix Bonilla, Ana Rovira, Cristina Peña, Daniel Navajas, Federico Rojo, Antonio García de Herreros, and Josep Baulida
 Précis: Cancer-associated fibroblasts that express the EMT regulator Snail contribute to the reorganization of the tumor microenvironment in a way that promotes the invasive behavior of tumor cells.
- **296** Akt Inhibition Enhances Expansion of Potent Tumor-Specific Lymphocytes with Memory Cell Characteristics
 Précis: Like other oncoprotein-targeting drugs initially conceptualized simply as tools to kill tumor cells, Akt inhibitors can be shown to act as immunomodulators that markedly enhance the properties of antitumor T cells, possibly a more broadly useful therapeutic aspect.
MOLECULAR AND CELLULAR PATHOBIOLOGY

Hypoxia-Induced SUMOylation of E3 Ligase HAF Determines Specific Activation of HIF2 in Clear-Cell Renal Cell Carcinoma

These findings show how a novel E3 ligase controls the oncogenic function of HIF2, a less-studied relative of the hypoxia controlled transcription factor HIF1 that has a distinct function in the development of aggressive kidney cancers.

Distinct Functions of Epidermal and Myeloid-Derived VEGF-A in Skin Tumorigenesis

These findings offer new mechanistic insights into distinct functions of VEGF-A expressed by different cell types in virally induced skin cancers, with possible implications for preventing this disease.

KAP1 Promotes Proliferation and Metastatic Progression of Breast Cancer Cells

These findings elucidate the role of an important developmental transcription network in promoting breast cancer growth and metastasis, with potential implications for a broad-based approach to treat advanced breast cancers.

miR30a Inhibits LOX Expression and Anaplastic Thyroid Cancer Progression

Thyroid cancer is typically readily treatable, but the anaplastic form, which is highly aggressive and associated with higher mortality, is a focus of this study identifying the targetable enzyme lysyl oxidase as a critical oncogenic driver.

TUSC4 Functions as a Tumor Suppressor by Regulating BRCA1 Stability

These results provide a set of genetic and biologic proofs that the candidate tumor suppressor gene TUSC4 functions as a bona fide suppressor by regulating the protein stability and function of BRCA1 in breast cancer.

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

In Vivo Radioimaging of Bradykinin Receptor B1, a Widely Overexpressed Molecule in Human Cancer

These results offer preclinical proof of concept for noninvasive imaging of a peptide receptor that is widely overexpressed in many human cancers as a generalized tool for monitoring tumor masses in patients.
A Urokinase Receptor–Bim Signaling Axis Emerges during EGFR Inhibitor Resistance in Mutant EGFR Glioblastoma

Précis: These studies reveal a type of therapeutic resistance in EGFR mutant forms of aggressive brain tumors, in which expression of the proapoptotic protein BIM could determine outcomes with anti-EGFR therapy.

Kinome-wide Functional Screen Identifies Role of PLK1 in Hormone-Independent, ER-Positive Breast Cancer

Neil E. Bhola, Valerie M. Jansen, Sangeeta Bafna, Jennifer M. Giltnane, Justin M. Balko, Mónica V. Estrada, Ingrid Menezes, Ingrid Mayer, Vandana Abramson, Fei Ye, Melinda Sanders, Teresa C. Dugger, Eliezer V. Allen, and Carlos L. Arteaga

Précis: These findings suggest that breast cancers that recur in a hormone-independent form may be sensitive to attack by experimental small molecule inhibitors that target the mitotic kinase PLK1, the most advanced of which is currently in phase III trials for acute myeloid leukemias.

TUBB3/bIII-Tubulin Acts through the PTEN/AKT Signaling Axis to Promote Tumorigenesis and Anoikis Resistance in Non–Small Cell Lung Cancer

Joshua A. McCarroll, Pei Pei Gan, Rafael B. Erlich, Marjorie Liu, Tanya Dwarte, Sharon S. Sagnella, Mia C. Akerfeldt, Lu Yang, Amelia L. Parker, Melissa H. Chang, Michael S. Shum, Frances L. Byrne, and Maria Kavallaris

Précis: These findings reveal how a structural protein tightly associated with aggressive disease and therapeutic resistance in lung adenocarcinomas and other cancers influences tumor growth.

Activin Upregulation by NF-κB Is Required to Maintain Mesenchymal Features of Cancer Stem–like Cells in Non–Small Cell Lung Cancer

J. Jacob Wamsley, Manish Kumar, David F. Allison, Sheena H. Clift, Caydlyn M. Holzhueber, Szymon J. Seynura, Stephen A. Hoang, Xiaojiang Xu, Christopher A. Moskaluk, David R. Jones, Stefan Bekiranov, and Marty W. Mayo

Précis: These findings point to a readily targeted extracellular factor needed to maintain the stem-like characteristics of tumor-initiating cells in non–small cell lung cancers, with potential therapeutic implications.

Loss of Estrogen-Regulated microRNA Expression Increases HER2 Signaling and Is Prognostic of Poor Outcome in Luminal Breast Cancer

Shannon T. Bailey, Thomas Westerling, and Myles Brown

Précis: An miRNA cluster that regulates HER2 levels in ER+ luminal A breast cancers may offer a simple biomarker of poor treatment outcomes in this disease setting.

PI3K/mTOR Dual Inhibitor VS-5584 Preferentially Targets Cancer Stem Cells

Vihren N. Kolev, Quentin G. Wright, Christian M. Vidal, Jennifer E. Ring, Irina M. Shapiro, Jill Ricono, David T. Weaver, Mahesh V. Padval, Jonathan A. Pachter, and Quinli Xu

Précis: A dual specificity small molecule inhibitor may provide a means to leverage the efficacy of cytotoxic chemotherapy and achieve more durable remissions in patients.

Nitric Oxide Mediates Metabolic Coupling of Omentum-Derived Adipose Stroma to Ovarian and Endometrial Cancer Cells

Bahar Salimian Rizi, Christine Caneba, Aleksandra Nowicka, Ahmad W. Nabiyar, Xinran Liu, Kevin Chen, Ann Klopp, and Deepak Nagrath

Précis: Blocking both secreted arginine levels and nitric oxide synthesis may yield a therapeutic benefit in ovarian and endometrial tumors by withdrawing a critical stromal support provided by adipose tissue in these settings.

Correction: Tid1-L Inhibits EGFR Signaling in Lung Adenocarcinoma by Enhancing EGFR Ubiquitylation and Degradation

AC icon indicates Author Choice
For more information please visit www.aacrjournals.org
ABOUT THE COVER

Some drugs initially aimed at deranged oncogenic pathways in tumors are finding more reliable targets in T cells as modulators of their cancer-killing activity. An Akt inhibitor was found to have a profound impact on gene transcription, metabolic fitness, long-lived persistence, and function of tumor-specific CD8$^+$ T cells. This graphic shows a principal component analysis of changes in global gene transcription caused by inhibition of Akt in T cells. For details, see the article by Crompton and colleagues on page 296.