Radioprotection of IDH1-Mutated Cancer Cells by the IDH1-Mutant Inhibitor AGI-5198

Remco J. Molenaar¹, Dennis Botman¹, Myrthe A. Smits¹, Vashendriya V. Hira¹, Sanne A. van Lith², Jan Stap¹, Peter Henneman³, Mohammed Khurshed¹, Krissie Lenting², Adri N. Mul³, Dionysia Dimitrakopoulou¹, Cornelis M. van Drunen⁴, Ron A. Hoebe¹, Tomas Radivoyevitch⁶, Johanna W. Wilming⁶, Jaroslaw P. Maciejewski⁷, W. Peter Vandertop⁸, William P. Leenders², Fonnet E. Bleeker³, and Cornelis J. van Noorden¹

Abstract

Isocitrate dehydrogenase 1 (IDH1) is mutated in various types of human cancer to IDH1R132H, a structural alteration that leads to catalysis of α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate. In this study, we present evidence that small-molecule inhibitors of IDH1R132H that are being developed for cancer therapy may pose risks with coadministration of radiotherapy. Cancer cells heterozygous for the IDH1R132H mutation exhibited less IDH-mediated production of NADPH, such that after exposure to ionizing radiation (IR), there were higher levels of reactive oxygen species, DNA double-strand breaks, and cell death compared with IDH1 wild-type cells. These effects were reversed by the IDH1R132H inhibitor AGI-5198. Exposure of IDH1 wild-type cells to D-2-hydroxyglutarate was sufficient to reduce IDH-mediated NADPH production and increase IR sensitivity. Mechanistic investigations revealed that the radiosensitivity of heterozygous cells was independent of the well-described DNA hypermethylation phenotype in IDH1-mutated cancers. Thus, our results argue that altered oxidative stress responses are a plausible mechanism to understand the radiosensitivity of IDH1-mutated cancer cells. Further, they offer an explanation for the relatively longer survival of patients with IDH1-mutated tumors, and they imply that administration of IDH1R132H inhibitors in these patients may limit irradiation efficacy in this setting. Cancer Res; 75(22): 4790–4802. © 2015 AACR.

Introduction

IDH1 and IDH2 are homodimeric enzymes that reversibly convert isocitrate to α-ketoglutarate (αKG) with concomitant reduction of NADP⁺ to NADPH in the cytoplasm and mitochondria, respectively (1). Somatic heterozygous hotspot mutations in IDH1/2 (IDHMT) are observed in substantial percentages of various tumor types, such as glioma (80%), acute myeloid leukemia (AML, 20%), cholangiocarcinoma (20%), chondrosarcoma (60%), and others (1). IDHMT cause metabolic changes in cancer (2). All IDHMT, of which IDH1R132H is the most prevalent in glioma, cause loss of enzymatic wild-type IDH (IDHWT) function (3–5). In addition, IDHMT have a neo-enzymatic (gain of function) activity: it converts αKG and NADPH to D-2-hydroxyglutarate (D-2HG) and NADP⁺. D-2HG is an oncometabolite that is present in trace amounts in IDHWT cells but accumulates to levels up to 50 mmol/L in IDHMT cancers (6). Because of the chemical similarities between D-2HG and αKG, D-2HG competitively inhibits αKG-dependent dioxygenases, such as ten-eleven translocation factor 2 (TET2) and JmjC-domain containing histone lysine demethylases (JHDM; refs. 7, 8). This results in a CpG island methylation phenotype (CIMP), which alters gene expression and induces malignant transformation (9).

Patients with IDHMT glioma and cholangiocarcinoma have up to 3-fold longer median overall survival times than IDHWT counterparts (3, 5, 10–12). Altered patient survival caused by differences in IDH1MT versus IDHWT tumor biology may be on the level of intrinsically reduced malignancy, and/or altered responses to therapy. We previously showed in human glioblastoma samples that IDH1MT are associated with a 38% decrease in IDH-mediated NADPH production capacity (5). NADPH is the most important source of reducing power for cellular detoxification of oxidants, because it is an essential cofactor for the regeneration of reduced glutathione (GSH) from oxidized glutathione (GSSG) by glutathione reductase. Therefore, we and others proposed that altered redox responses result in increased responses to therapy in...
were cultured in 5% CO2, 5% CO2, and 10% CO2, respectively, at (Li-Cor Biotechnology).

Western blots were analyzed using a Li-Cor Odyssey system.

Materials and Methods

Cell lines

HCT116 IDH1 WT/R132H knock-in cells, generated by AAV targeting technology GENESIS (28), were kindly provided by Horizon Discovery Ltd. HT1080 chondrosarcoma cells were a kind gift of Dr. Hamann (Department of Experimental Immunology, AMC, University of Amsterdam). U251 and LN229 glioblastoma cells were stably transduced using lentiviral constructs encoding for IDH1 WT or IDH1 R132H as described earlier (29). Constructions contain a C-terminal biotin acceptor peptide and a HIS-tag, which allows distinction from endogenous IDH1 WT by molecular weight. IDH1 WT and IDH1 R132H expression was analyzed by Western blotting using a pan-IDH1 antibody (HPA0352428, Sigma-Aldrich) and a specific antibody recognizing IDH1 R132H (30). Western blots were analyzed using a Li-Cor Odyssey system (Li-Cor Biotechnology).

IDH1 WT/R132H and IDH1 WT/WT HCT116 cells were cultured in McCoy’s 5a medium (Gibco; Life Technologies; Thermo Fisher Scientific) in 5% CO2, at 37°C. U251, LN229, and HT1080 cells were cultured in 5% CO2, 5% CO2, and 10% CO2, respectively, at 37°C in complete DMEM (Gibco). All media were supplemented with 10% FBS (HyClone; Thermo Fisher Scientific), 100 units/mL penicillin, and 100 µg/mL streptomycin (both Gibco).

Reagents

AGI-5198 was purchased from MedChemExpress; L-2HG, D-2HG, eKg, coenzyme A, thiamine pyrophosphate, and N-acetyl cysteine (NAC) were purchased from Sigma-Aldrich. Metformin was purchased from BioConnect.

Enzyme activity measurements

Cells were cultured in the presence of 200 to 800 nmol/L AGI-5198 or solvent only (DMSO, final concentration ≤ 0.5%) and subsequently trypsinized and centrifuged onto microscopy slides using a cytocentrifuge (Cytopsin 4 Cytocentrifuge, Shandon, Thermo Fisher Scientific) at 20 rcf for 5 minutes at room temperature. Cytosplins were air-dried for 1 day and subsequently stained using metabolic mapping to visualize NAD+ dependent or NADP+ dependent activities of IDH1 [EC numbers 1.1.1.41 (IDH3) and 1.1.1.42 (IDH1/2), respectively], NAD− dependent activity of eKg dehydrogenase (eKgDH; EC number 1.2.4.2), or NADP+ dependent activity of glucose-6-phosphate dehydrogenase (G6PD; EC number 1.1.1.49). Enzyme activity experiments were conducted and analyzed as described previously (31, 32). We used nitroetrazolium blue chloride (NBT; Sigma-Aldrich) in the enzyme reaction medium and a 585 nm monochromatic filter to exclusively record formazan produced from NBT. Incubation with substrate and cofactors was performed at 37°C for 60 minutes to detect NADP+-dependent or NAD− dependent IDH activity (30 minutes for tissue), 60 minutes to detect NAD+ dependent eKgDH activity, and 10 minutes to detect NADP+ dependent G6PD activity. Control reactions were performed in the absence of substrate but in the presence of cofactors to control for nonspecific enzyme activity staining (31, 32). Enzyme activity measurements of cells overexpressing IDH1 WT or IDH1 R132H were normalized to enzyme activity measurements of parental cells by correcting for relative pan-IDH1 expression levels of cells, as determined by Western blotting.

We used supraphysiological substrate concentrations (up to 30 mmol/L) because the viscous 18% polyvinyl alcohol-containing enzyme reaction medium does not allow sufficient substrate diffusion at low concentrations. Thus, the determined enzyme activities do not reflect the in vivo situation at a given substrate concentration but are suitable for intraexperimental comparisons (31). D-2HG and L-2HG inhibition experiments were performed in the presence of 1 mmol/L isocitrate or 3 mmol/L eKg and 30 mmol/L D-2HG or 30 mmol/L L-2HG or solvent only (double-distilled H2O, final concentration ≤ 3%) in the enzyme activity reaction medium. The 2HG:isocitrate and 2HG:eKg ratios used in these experiments are in line with the pathophysiological conditions in human glioma where D-2HG concentrations may be up to 100- to 1,000-fold higher than isocitrate and eKg concentrations (6).

Colonyc-forming assays after IR

Colonyc-forming assays after IR were performed and analyzed as described previously (33). Five to 500 cells/cm2 were seeded; higher densities are needed at higher IR doses to obtain sufficient amounts of colonies. Cells were treated from 72 hours before to 4 hours after IR with D-2HG, AGI-5198, the reactive oxygen species (ROS) scavenger NAC, or solvent only (DMSO, ≤ 0.5%). Cells were irradiated with 1 to 6 Gy using a 137Cs source (Department of Experimental Oncology and Radiobiology, Academic Medical Center, University of Amsterdam) at 6 hours after plating in the presence or absence of 0 to 800 mmol/L AGI-5198, 0 to 10 mmol/L D-2HG, or 0 to 5 µmol/L NAC. Cells were fixed and stained at 10 days after IR with a mixture of 0.05% crystal violet (Merck) and 6% glutaraldehyde (Merck) for ≥ 2 hours at room temperature. Clones consisting of ≥50 cells were manually counted using a stereoscope (Leica MZ6, Leica Microsystems; ref. 33). Data are expressed as clonogenic fraction.
Figure 1.

IDH1R132H mutations reduce IDH-mediated NADPH production and radioresistance. A, the NADP⁺-dependent IDH activity of early-passage (P3) *IDH1WT/WT* and *IDH1WT/R132H* HCT116 cells at various isocitrate concentrations was determined as absorbance of blue formazan produced from NBT per cell. B, U251 and LN229 glioblastoma (parental) cell lines were stably transduced with lentiviral vectors harboring *IDH1WT* and *IDH1R132H* genes. All open reading frames have a C-terminal biotin acceptor peptide and a HIS tag for detection and purification purposes (not used in this work), which is why two IDH1 bands appear on the blot. The lower band is endogenous IDH1; the upper band is the tagged IDH1. Anti-pan-IDH1 antibody was used to detect IDH1WT and IDH1R132H. (Continued on the following page.)
which is the number of colonies counted divided by the number of cells plated, corrected for the plating efficiency. D_0 and ν values were found by fitting a semilog line through the clonogenic fraction data points of the final slope. D_0 values were found by solving the semilog line equation for 1.

Epigenome-wide DNA methylation analysis

Cells were lysed and genomic DNA was isolated as described previously (34). Genomic DNA was bisulfite-converted using the EZ DNA Methylation Gold Kit (Zymo Research). Bisulfite-converted DNA was analyzed for epigenome-wide DNA methylation analysis using an Infinium HumanMethylation 450 BeadChip array (Illumina). This array includes over 450,000 CpG sites that cover approximately 99% of the RefSeq genes. Analysis was performed in the MinFI R-package (R statistical programming language), and samples were normalized using the SWAN method (35). Normalized β-values were evaluated. Values are between 0 and 1, which stand for a completely unmethylated and methylated probe, respectively.

Cellular NADP(\dagger), NADPH, GSH, GSSG, and ROS measurements

10^5 cells were plated in a 6-well plate, incubated in the presence or absence of 800 nmol/L AGI-5198, and treated with 0 to 2 Gy IR. After 60 minutes, cells were harvested, prepared, and analyzed for NADP(\dagger)/NADPH ratios, GSH/GSSG ratios, and ROS levels using a colorimetric NADP(\dagger)/NADPH Ratio Detection Assay Kit (Abcam), a fluorometric GSH/GSSG Ratio Detection Assay Kit (Abcam), and a fluorometric CellROX Deep Red ROS detection assay kit (Life Technologies), respectively, in a 96-well plate using a POLARStar Galaxy microplate reader (BMG Labtech) according to the manufacturer’s protocols. In addition, cells were analyzed for ROS levels using a CellROX Deep Red ROS detection assay kit (Life Technologies) in an LSR Fortessa fluorescence flow cytometry analyzer (BD Biosciences) according to the manufacturer’s protocol. Cells were counterstained using a STYTOX Blue Dead Cell Stain (Life Technologies). Data were processed in FACSDiva (BD Biosciences) and analyzed in FlowJo (FlowJo).

γ-H2AX immunofluorescence staining and measurements

DNA double-strand breaks (DSB) kinetics were studied using γ-H2AX foci immunofluorescence staining (36). Cells were plated on glass coverslips in a 6-well plate, incubated in the presence or absence of 800 nmol/L AGI-5198, and treated with 0 to 2 Gy IR, washed with PBS and fixed after 30 minutes using 2% paraformaldehyde for 15 minutes. Cells were permeabilized with tPNSB (PBS containing 1% Triton X-100 and 1% FCS) for 1 hour and stained for γ-H2AX foci using a mouse monoclonal anti-γ-H2AX antibody [Millipore; diluted 1:100 in sTNBS (PBS containing 0.1% Triton X-100 and 1% FCS)] for 90 min at room temperature. Cover slips were washed with sTNBS and stained using secondary goat anti-mouse Cy3 antibody (Jackson ImmunoResearch, diluted 1:100 in sTNBS) for 30 minutes at room temperature in the dark. Lastly, cover slips were washed with sTNBS, and nuclei were stained with DAPI (Millipore, 1:500) for 2 minutes at room temperature. Cover slips were mounted on microscopy slides using Vectashield (Vector Laboratories). Nail polish was used as sealant.

The number of γ-H2AX foci per cell was determined using a Leica DM RA HC fluorescence microscope equipped with a CCD camera and a 100 x objective Plan Apochromat lens with 1.40 numerical aperture (Leica Microsystems). Cy3 and DAPI signals were captured using excitation/emission wavelengths of 550/570 nm for 400 ms and 360/460 nm for 50 ms, respectively. Photomicrographs were obtained using custom-made software (Van Leeuwenhoek Center for Advanced Microscopy, Academic Medical Center, Amsterdam, the Netherlands). Stack images of at least 200 cells per sample were taken. One stack consisted of 40 slices with a 300-nm interval between the slices along the z-axis. The images were processed using deconvolution software, and the number of γ-H2AX foci per cell was automatically scored using custom-made software.

Statistical analysis

Data were processed in Excel (Microsoft) and analyzed using SPSS (IBM) and GraphPad Prism 6 (GraphPad Software). Nonlinear least squares were used to fit enzyme models. Data shown are representative of, or mean ± SEM of, at least three independent experiments. P-values were calculated as described in the Materials and Methods section and figure legends: *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$; ****, $P < 0.0001$.

Results

IDH1^{WT} reduce IDH-mediated NADPH production and IR tolerance in vitro

NADP$^+$-dependent IDH activity was significantly lower in $\text{IDH1}^{WT}/\text{R132H}$ HCT116 cells than in $\text{IDH1}^{WT}/\text{WT}$ HCT116 cells (Fig. 1A; Supplementary Fig. S1A). The reduced IDH-mediated NADPH production capacity of IDH1^{WT} cells was confirmed in U251 and LN229 glioblastoma cell lines that stably overexpressed IDH1^{WT} or IDH1^{R132H} (Fig. 1B–D). Cells overexpressing IDH1^{WT} had a higher IDH-mediated NADPH production capacity than parental glioblastoma cells.

The vulnerability of $\text{IDH1}^{WT}/\text{R132H}$ and $\text{IDH1}^{WT}/\text{WT}$ HCT116 cells to IR was investigated using colony-forming assays. Relative to $\text{IDH1}^{WT}/\text{WT}$ cells, we observed a significantly reduced surviving fraction of $\text{IDH1}^{WT}/\text{R132H}$ cells at all IR doses (Fig. 1E), i.e., IDH1^{R132H} radiosensitizes HCT116 cells. We hypothesized that the increased radiosensitivity of $\text{IDH1}^{WT}/\text{R132H}$ HCT116 cells was caused by increased vulnerability to oxidative stress, which is a result of reduced IDH-mediated NADPH production capacity. To test this, we treated $\text{IDH1}^{WT}/\text{R132H}$ and $\text{IDH1}^{WT}/\text{WT}$ HCT116 cells with the NADPH surrogate and ROS scavenger NAC at 4 hours before IR.

(Continued) A specific antibody against IDH1^{WT215} was used for detection of the IDH1^{WT215}–mutant enzyme. GAPDH served as a loading control. C and D, as in A, but with IDH1^{WT215} and IDH1^{WT}–overexpressing glioblastoma cell lines U251 (C) and LN229 (D). To control for overexpression artifacts, enzyme activity of IDH1^{WT215}, and IDH1^{WT}–overexpressing cells was normalized relative to the enzyme activity of parental cells based on pan-IDH expression levels as determined by Western blot. E, colony-forming assay after 0 to 6 Gy IR with IDH1^{WT215} and $\text{IDH1}^{WT}/\text{R132H}$ HCT116 cells. The clonogenic fraction is the number of colonies counted divided by the number of cells plated, corrected for the plating efficiency. F, as in E, but in the presence or absence of 5 μmol/L of ROS-scavenging NAC. G, β–values frequency plot of P3 and P30 IDH1^{WT215} and $\text{IDH1}^{WT}/\text{R132H}$ HCT116 cells that were subjected to epigenome-wide DNA methylation analysis to determine whether IDH1^{WT215} induced a DNA hypermethylator phenotype after long-term culture. β–Values were between 0 and 1 and represent completely unmethylated and methylated probes, respectively. Inset, magnified plot of β–values between 0.8 and 1. H, as in E, but with P30 IDH1^{WT215} and $\text{IDH1}^{WT}/\text{R132H}$ HCT116 cells. Y-axis in E, F, and H is logarithmic, v, versus; n.s., not significant.
NAC equalized the surviving fractions of IDH1WT/R132H and IDH1WT/WT HCT116 cells (Fig. 1F). This suggests that oxidative stress mediates the increased radiosensitivity of IDH1WT/R132H HCT116 cells. The culture medium McCoy 5A contains 0.5 mg/L reduced glutathione, which may affect redox potentials of HCT116 and therefore their IR response. We confirmed the increased radiosensitivity of IDH1WT/R132H HCT116 cells in DMEM medium, which contains no reduced glutathione (Supplementary Fig. S1B).

IDH1MT induce CIMP after long-term passaging of cells (9). CIMP has profound effects on gene expression and, theoretically, this could alter IR sensitivity. We compared genome-wide methylation levels in early-passage (P3) and late-passage (P30) IDH1WT/R132H and IDH1WT/WT HCT116 cells and observed a relative CIMP in P30 compared with P3 IDH1WT/R132H and IDH1WT/WT HCT116 cells. Long-term culture did not induce CIMP in IDH1WT/WT HCT116 cells (Fig. 1G). IR sensitivity of P30 IDH1WT/R132H HCT116 cells (Fig. 1H) did not differ from IR sensitivity of P3 IDH1WT/R132H HCT116 cells (Fig. 1E), and IR sensitivity is thus not related to CIMP. Statistics and Dp, n, and Dα values for all colony-forming assays are shown in Supplementary Tables S1 and S2.

D-2HG sensitizes cells to IR and inhibits IDH-mediated NADPH production

A hallmark of IDH1MT cancer is D-2HG accumulation (1, 6), and D-2HG is known to induce oxidative stress in glia, neurons (37–39), and Drosophila (40). Therefore, we considered the possibility that D-2HG is responsible for the sensitization of IDH1WT/R132H HCT116 cells to IR. IDH1WT/WT and IDH1WT/R132H HCT116 cells were exposed to D-2HG from 4 hours before to 4 hours after IR treatment. D-2HG significantly decreased the clonogenic fractions of IDH1WT/WT and IDH1WT/R132H HCT116 cells after IR (Fig. 2A), i.e., D-2HG radiosensitizes HCT116 cells. Of note, the radiosensitizing effect of D-2HG was larger in IDH1WT/WT than in IDH1WT/R132H HCT116 cells, in line with pre-existing endogenous D-2HG in IDH1WT/R132H HCT116 cells.

D-2HG and L-2HG are competitive inhibitors of xKG-dependent enzymes (7, 8, 41). The structural similarity between isocitrate, xKG, and D-2HG led us to hypothesize that high levels of D-2HG in IDH1MT cancers inhibit IDH-mediated NADPH production capacity. To study this, we performed enzyme activity experiments in the presence and absence of D-2HG or L-2HG. D-2HG and L-2HG reduced the IDH-mediated NADPH production capacity in IDH1WT/WT and IDH1WT/R132H HCT116 cells, U251 glioblastoma cells, and IDH1WT and IDH1MT human glioblastoma tissue (n = 8; Fig. 2B–E): this inhibition was dose-dependent (Supplementary Fig. S2A). In addition, D-2HG and L-2HG inhibited the xKGDH-mediated NADH production capacity in IDH1WT and IDH1MT human glioblastoma tissue (n = 8; Fig. 2E and F). For both IDH1 and xKGDH, L-2HG was a more efficient IDH inhibitor than D-2HG. These results indicate that D-2HG and L-2HG are inhibitors of IDH-mediated NADPH production capacity. D-2HG and L-2HG did not affect G6PD-mediated NADPH production capacity or IDH-dependent NADH production capacity, indicating absence of off-target effects (Supplementary Fig. S2B and S2C).

The IDH1WT inhibitor AGI-5198 restores IDH-mediated NADPH production in IDH1MT cells

Since the introduction of IDH1R132H increases metabolic stress via a reduced NADPH production capacity, we hypothesized that IDH1R132H inhibition reverses this effect. Indeed, after 72 hours of incubation in the presence of AGI-5198, IDH-mediated NADPH production capacity of IDH1WT/R132H HCT116 cells was restored to levels comparable with those of IDH1WT/WT HCT116 cells (Fig. 3A). In contrast, no effect was detected after 4 hours of incubation with AGI-5198 (Fig. 3B) or in IDH1WT/R132H HCT116 cells that were treated with AGI-5198 after adherence to microscopical slides (Supplementary Fig. S3A). This suggests that AGI-5198 restores IDH-mediated NADPH production capacity after relieving IDH1WT/R132H cells of high D-2HG concentrations. We validated these results in IDH1R132H U251 and LN229 cells (Fig. 3C and D). IDH1R132H U251 cells needed the highest AGI-5198 doses for restoration of IDH-mediated NADPH production capacity, followed by IDH1R132H LN229 cells, followed by IDH1WT/R132H HCT116 cells. This may relate to higher IDH1R132H expression in U251 than in LN229 cells and higher IDH1R132H expression in IDH1R132H-overexpressing cells than in IDH1WT/R132H knock-in cells (Fig. 1B; Supplementary Fig. S1C). Larger amounts of IDH1R132H protein may require higher AGI-5198 doses for complete IDH1R132H inhibition. There was no effect after 72-hour incubation with AGI-5198 on NADP+–dependent IDH activity in IDH1WT/WT HCT116 cells (Fig. 3E and F) or NAD–dependent IDH3 activity in IDH1WT/R132H HCT116 cells (Supplementary Fig. S3D), in agreement with AGI-5198 specificity for IDH1R132H (23). Because AGI-5198 inhibits IDH1R132C as well, although at higher concentrations than IDH1R132H (23), we confirmed our results in IDH1WT/R132C HT1080 cells (Supplementary Fig. S3C and S3D).

IDH1MT decrease NADPH and GSH levels and increase ROS levels and AGI-5198 attenuates this effect

We investigated the effects of IDH1MT on cellular NADPH, GSH, and ROS levels with and without pretreatment with IR. Under steady-state conditions, IDH1WT/R132H HCT116 cells had similar NADP+/NADPH ratios, GSH/GSSG ratios, and ROS levels as IDH1WT/WT HCT116 cells, as determined by colorimetric and fluorometric assays and fluorescence flow cytometry experiments (Fig. 4A–D; Supplementary Fig. S4). After treatment with 2 Gy IR, we observed an increase in the NADP+/NADPH ratio (owing to more NADP+ and/or less NADPH), a decrease in the GSH/GSSG ratio (owing to less GSH and/or more GSSG), and an increase in ROS levels in all cell lines. Notably, the increase in the NADP+/NADPH ratio and ROS levels and the decrease in the GSH/GSSG ratios was larger in IDH1WT/WT HCT116 cells than in IDH1WT/R132H HCT116 cells, and the IDH1WT inhibitor AGI-5198 attenuated this effect in IDH1WT/R132H HCT116 cells (Fig. 4C and D). These findings suggest that compared with IDH1WT/WT HCT116 cells, the higher ROS levels in IDH1WT/R132H HCT116 cells after IR result in a higher GSH and NADPH consumption.

AGI-5198 protects IDH1MT cells against IR

Because reduced NADPH production capacity in IDH1WT/R132H cells is associated with radiosensitization (Fig. 1), we hypothesized that by restoring NADPH production capacity in IDH1WT/WT cells, the IDH1WT inhibitor AGI-5198 radioprotects IDH1WT/WT cells. Therefore, we exposed IDH1WT/R132H and IDH1WT/WT HCT116 cells to AGI-5198 for 72 hours before IR. AGI-5198 did not affect radiosensitivity of IDH1WT/WT HCT116 cells, but reduced radiosensitivity of IDH1WT/R132H HCT116 cells, in a dose-dependent fashion, to radiosensitivity levels comparable with those of IDH1WT/WT HCT116 cells (Fig. 5A and B). These data show that AGI-5198 radioprotecids IDH1WT/R132H HCT116 cells and that high AGI-5198 doses completely block IDH1R132H-induced
radiosensitivity. We confirmed these findings in IDH1mut-expressing U251 glioblastoma cells (Fig. 5C), where higher AGI-5198 doses were needed to reach a maximal effect. This is in agreement with our finding that higher AGI-5198 doses were needed to restore the IDH-mediated NADPH production capacity in U251 cells than in HCT116 cells (Fig 3A and C). No effect on radiosensitivity of IDH1WT/R132H HCT116 cells was observed after 4 hours of incubation with AGI-5198 (Fig. 5D). AGI-5198 was unable to radioprotect IDH1WT/R132H or IDH1WT/WT HCT116 cells in the presence of D-2HG (Fig. 5E), so the radioprotective mechanism of AGI-5198 on IDH1WT/R132H HCT116 cells depends predominantly on the inhibition of IDH1R132H-mediated D-2HG production.

IDH1mut increase numbers of DNA DSBs and AGI-5198 reverses this effect

DNA DSBs are important mediators of IR-induced cell death (36). We therefore hypothesized that IDH1mut cells are radiosensitized because they have increased numbers of DNA DSBs after IR. IDH1WT/R132H HCT116 cells had more γ-H2AX foci after treatment
with 1 or 2 Gy of IR than IDH1WT/WT HCT116 cells, and AGI-5198 decreased the numbers of γ-H2AX foci after IR in IDH1WT/R132H, but not in IDH1WT/WT HCT116 cells (Fig. 6A and B).

Discussion

We showed that introduction of IDH1R132H results in D-2HG accumulation, inhibits IDHWT function, and sensitizes cells to IR and metformin. The overall process can thus be described as a D-2HG-NADPH-therapy sensitivity cascade for IDH1MT cancer cells (Fig. 7). Inhibition of IDH1MT by AGI-5198 disrupts this cascade at the level of D-2HG production, which enhances the capacity of IDH1MT cells to reduce oxidative stress and protects them against IR and metformin.

Patients with glioma or cholangiocarcinoma tumors carrying IDH1MT have prolonged overall survival compared with IDH1WT counterparts (3, 5, 10, 11). This can be attributed to intrinsic (e.g., less aggressive tumors) and/or extrinsic (e.g., better response to therapy) differences in IDH1MT versus IDH1WT cancers. Our data support a correlation between IDH1MT and response to therapy,
Figure 4.

IDH^{R132H} decrease NADPH levels and GSH levels, increase ROS levels, and AGI-5198 attenuates this effect. A, cells were incubated in the presence or absence of 800 nmoL/L AGI-5198 and treated with 0 to 2 Gy IR and were harvested, prepared, and colorimetrically analyzed for NADP⁺/NADPH ratios after 60 minutes. B, as in A, but with fluorometric analysis for GSH/GSSG ratios. C, as in A, but with fluorometric analysis for ROS levels. D, as in C, but with fluorescence-guided flow cytometry analysis for ROS levels (x-axis) and viable cells (y-axis).

P values were obtained using one-way ANOVA on the difference between IR-treated and untreated cells using Tukey correction for multiple comparisons. All concentrations in the figure refer to AGI-5198.
which has been shown by others, both in vitro (15–17) and retrospectively in the clinic (18, 19). Our novel finding is that D-2HG accumulation, as occurs in IDH1MT cancers, directly radiosensitizes cancer cells via inhibition of IDH-mediated NADPH production capacity and that this is associated with increased numbers of DNA DSBs after IR. Thus, the prolonged survival effects of IDH1MT in glioma patients may, at least partly, be the result of a relative radiosensitivity of IDH1MT cancer cells.

IDH1MT confer a worse prognosis in AML patients (45). One difference between AML and glioma is that IR is typically not used to treat AML, whereas it is routinely used as a treatment modality for glioma. Cytarabine and daunorubicin are used to treat AML and operate by DNA synthesis chain termination and topoisomerase activity, which cause cell death independent of ROS formation. Furthermore, D-2HG accumulation in AML cells has likely less biologic impact since NADPH production in leukocytes is largely attributable to activity of G6PD, not IDH1/2 (46). In contrast, IDH1/2 is responsible for 65% of NADPH production in glioblastoma, and IDH1MT decrease NADPH production capacity by 38% (5), making these tumors dependent on IDH1/2 for reducing power.

In addition to glioblastoma and chondrosarcoma cell lines, we used HCT116 colorectal carcinoma cells as in vitro model. Although IDH1MT are not as prevalent in colorectal carcinoma as in glioma, chondrosarcoma, or cholangiocarcinoma, they do occur in 0.5% of patients (47). Thus, IDH1MT may affect colorectal cancer cells similarly to glioma, cholangiocarcinoma, and chondrosarcoma cells. Because IDH1R132H functions as a heterodimer with IDH1WT, 1:1 IDH1R132H:IDH1WT expression in IDH1WT/R132H HCT116 cells is more true to nature than IDH1R132H overexpression. Previous reports (3, 5) have shown that the loss-of-function effects of IDH1MT are responsible for reduced IDH-mediated NADPH production capacity in IDH1MT tumors. In cancer cells, IDH1R132H mutations are heterozygous, i.e., cells lose one functional NADPH-producing allele. In addition, the net NADPH production in IDH1MT cells is further reduced via NADPH consumption by IDH1R132H (6). However, reductive hydroxylation of αKG by IDH1R132H occurs 100 to 1,000 times slower than the oxidative decarboxylation by IDH1WT (6, 48), so such compounding is likely negligible. The present study shows that IDH1MT reduce NADPH production capacity through a third mechanism: IDH1R132H-produced D-2HG inhibits IDH1WT. This supports earlier
findings that IDH1MT inhibit catalytic IDH1WT function in a dominant-negative fashion (4). We show that this dominant-negative inhibition is mediated by D-2HG. Another, but not mutually exclusive, explanation is that this dominant-negative inhibition is mediated by dysfunctional IDH1WT-IDH1R132H heterodimers (49). In addition to IDHWT, D-2HG inhibits aKGDH and cytochrome C oxidase (complex IV of the electron transport chain; ref. 50), which further compromises tricarboxylic acid cycle metabolism in IDHMT cells. AGI-5198 did not protect IDH1WT/R132H HCT116 cells against IR when exogenous D-2HG was administered. This supports the notion that NADPH consumption by IDH1R132H does not radiosensitize IDH1WT/R132H HCT116 cells.

Of note, L-2HG was a more potent inhibitor than D-2HG of IDH and aKGDH. This corroborates studies that showed that L-2HG is a more potent inhibitor than D-2HG of αKG-dependent enzymes, such as TET2, IDHMs, and EGLN (7, 8).

AGI-5198 restored IDH1-mediated NADPH production capacity and radiosensitivity of IDH1MT cells, and both effects are likely the result of AGI-5198-inhibited D-2HG synthesis. High-dose AGI-5198 completely abolishes D-2HG accumulation (23) and completely rescued the radiosensitivity of IDH1WT/R132H HCT116 cells. Oxidative stress is a likely mediator of IDH1WT/R132H radiosensitization in HCT116 cells, because the ROS scavenger NAC normalized the radiosensitivity of IDH1WT/R132H HCT116 cells to levels of IDH1WT/WT HCT116 cells. In addition, IDH1MT cells were also sensitized for treatment with metformin, whereas AGI-5198 protected IDH1MT cells against metformin. This is in agreement with the fact that mitochondrial inhibitors such as metformin depend on oxidative stress to induce cell death (44). Previous reports have shown that D-2HG induces cellular oxidative stress (37–40), although the underlying mechanisms remained elusive thus far. Our data indicate that inhibition of IDH-mediated NADPH production capacity and aKGDH-mediated NADH production capacity by D-2HG and the resulting metabolic stress is, at least partly, responsible for this phenomenon. Our findings that D-2HG and L-2HG inhibit the activity of IDH1WT and aKGDH suggest that this inhibition is due to the chemical similarities between D-2HG, L-2HG, and αKG.

Long-lasting exposures of AGI-5198 (72 hours) radioprotected IDH1MT cells but short exposures (4 hours) did not. These data corroborate our quantitative enzyme histochemistry results where 72-hour exposure to high doses of AGI-5198 completely restored IDH1-mediated NADPH production capacity of IDH1MT cells, but 4-hour exposures did not. This indicates that there is a delaying
intermediate that causes lagged AGI-5198–induced restoration of IDH-mediated NADPH production capacity and radiosensitivity. Our findings suggest that D-2HG is this intermediate and that D-2HG is metabolized slowly. This supports speculations that the activity of D-2HG dehydrogenase (D-2HGDH) is low (51). In addition, it is accordant with the finding that ML309, an IDH1MT inhibitor similar to AGI-5198, maximally suppresses D-2HG concentrations when applied for at least 24 hours (25).

IDH1MT decreased NADPH and GSH levels and increased ROS levels, but only when cells were treated with IR. This corroborates earlier studies in which IDH1MT decreased NADPH and GSH levels and increased ROS in glioblastoma cells after treatment with temozolomide and CDDP (15), but not in a transgenic mouse model or glioblastoma cells under steady-state conditions (15, 52). Taken together, our results suggest that in contexts of stress, such as after treatment with IR, the cellular demand for GSH increases. As a consequence, the demand for NADPH increases, but IDH1WT compromise the cellular NADPH production capacity, and this restricts recycling of GSSG to GSH enough to cause higher ROS levels, i.e., it causes a scenario in which NADPH demand outweighs NADPH supply. In all, our results suggest that altered oxidative stress response is the most likely downstream element of IDH1MT radiosensitivity. Oxidative stress can either directly induce cell death after treatment with IR, or indirectly via DNA DSBs. On average, IDH1WT/R132H HCT116 cells had twice the amount of DNA DSBs of IDH1WT/R132H HCT116 cells after treatment with 2 Gy IR, but the amount of DNA DSBs was only slightly increased in IDH1WT/R132H compared with IDH1WT/R132H HCT116 cells after treatment with 1 Gy IR. This resonates with a larger radiosensitivity of IDH1MT cells relative to IDH1WT cells after treatment with ≥ 2 Gy IR than after treatment with 1 Gy IR. Further research is needed to assess whether this is due to increased generation of DSBs by oxidative stress, or decreased DNA DSB repair, and whether IDH1MT cancers are sensitized to anticancer therapy that targets DNA DSB repair, such as PARP inhibitors. CIMP did not affect the radiosensitivity of IDH1MT cells, which argues against a role for epigenetics in this phenomenon. Moreover, long-term AGI-5198 treatment does not reverse CIMP in IDH1MT glioma cells (23), and this further precludes a link between CIMP and IDH1MT radiosensitivity, because AGI-5198 reverses IDH1MT radiosensitization already after 72 hours.

Clinical trials with IDH1MT inhibitors have already started in patients with IDH1MT cancer. Our data show that AGI-5198 antagonizes the possibly survival-prolonging radiosensitizing effects of IDH1MT in glioma. Our in vitro results suggest that concomitant administration of IDH1MT inhibitors and IR may result in an unfavorable clinical outcome. In vivo validation is urgently necessary as IDH1MT inhibitors are already in clinical trials. These limitations may also apply to other therapeutic strategies that include a combination of IDH1MT inhibition with anticancer agents whose activity is mediated by oxidative stress. More specifically, we warn against simultaneous treatment with IDH1MT inhibitors and IR. Instead, we envision treatments in which conventional treatment modalities are applied subsequently, but not concomitantly, with IDH1MT inhibitors. IDH1MT inhibitors may be of clinical use when patients are in periods of recovery from conventional anticancer drugs whose activity is mediated by oxidative stress. We propose that personalized medicine for IDH1MT solid tumors should aim to increase, not decrease, oxidative stress. This may be achieved by antitumor immune responses after immunization of patients with an IDH1R132H peptide (53), causing inflammatory ROS, or physical exercise.
causing mitochondrial ROS (54). In addition, other Achilles’ heels in IDH^{MT} metabolism could be exploited, such as mito-
chondrial dysfunction (50), increased dependence on glutam-
olysis (2, 55–59) and oxidative phosphorylation (42, 43). These
vulnerabilities can be pharmacologically targeted via BCL-2 inhib-
itors, chloroquine, and metformin, respectively.

In summary, our data show that AGI-5198 radioprotec-
tions IDH^{MT} inhibitions during IR may thus abolish the prolonged survival of IDH^{MT} glioma patients. We warn against multiagent clinical trials with concom-
itant use of IDH^{MT} inhibitors and IR.

Disclosure of Potential Conflicts of Interest
J.P. Maciejewski has received speakers bureau honoraria from Alexion, Celgene, and Ra Pharma, and is a consultant/advisory board member for Alexion PNH Advisory Board. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions
Conception and design: R.J. Molenaar, D. Botman, C.M. van Drunen, T. Radivoyevitch, J.P. Maciejewski, W.P. Leenders, F.E. Bleeker, C.J. van Noorden
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, this fact.

The authors thank Wikkie Tijgelaar-Gartner, Renske Hulsbos, Ece Nokay, Berend Hooibrink, Dr. Klaas Franken, Dr. Wiljan Hendriks, Ing. Jan Schepens, and Dr. Aed Jonker for technical support.

Grant Support
The research described in this report was supported by the Dutch Cancer Society (KWF; UVA 2014-6839). R.J. Molenaar was supported by an AMC PhD Scholarship.

The costs of publication of this article were delayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received December 9, 2014; revised August 6, 2015; accepted August 12, 2015, published OnlineFirst September 11, 2015.

References

5. Bleeker FE, Aai NA, Lamba S, Jonker A, Rijkeboer D, Bosch KS, et al. The prognostic IDH[1(R132)] mutation is associated with reduced NADP⁺-depend-
7. Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, et al. The oncometabolites 2-hydroxyglutarate inhibits histone lysine demethy-
hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-depend-
2013;32:783–90.
20. Bleeker FE, Molenaar RJ, Leenstra S. Recent advances in the molecular under-

Other (conducted some experiments as an intern student): D. Dimitrakopoulou

IDHIR132H Inhibition Radioprotec
tid IDHIR132H Cells

J. Stap, P. Henneman, M. Khursheed, A.N. Mul, C.M. van Drunen, R.A. Hoebe, W.P. Leenders

Writing, review, and/or revision of the manuscript: R.J. Molenaar, D. Botman, S.A. van Lith, J. Stap, P. Henneman, M. Khursheed, K. Lenting, C.M. van Drunen, T. Radivoyevitch, J.W. Wilmink, J.P. Maciejewski, W.P. Vandertop, W.P. Leen-
ders, F.E. Bleeker, C.J. van Noorden

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): D. Botman, P. Henneman

Study supervision: R.J. Molenaar, J.P. Maciejewski, F.E. Bleeker, C.J. van Noorden

Published OnlineFirst September 11, 2015; DOI: 10.1158/0008-5472.CAN-14-3603

Cancer Res; 75(22) November 15, 2015 4801

www.aacrjournals.org

Downloaded from cancerres.aacrjournals.org on January 4, 2018. © 2015 American Association for Cancer Research.
Molenaar et al.

Radioprotection of IDH1-Mutated Cancer Cells by the IDH1-Mutant Inhibitor AGI-5198

Remco J. Molenaar, Dennis Botman, Myrthe A. Smits, et al.

Cancer Res 2015;75:4790-4802. Published OnlineFirst September 11, 2015.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-14-3603

Cited articles
This article cites 58 articles, 20 of which you can access for free at:
http://cancerres.aacrjournals.org/content/75/22/4790.full#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/75/22/4790.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/75/22/4790.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.