Table of Contents

Breaking Advances

617
Highlights from Recent Cancer Literature

Reviews

619
Emerging Links between E2F Control and Mitochondrial Function
Elizaveta V. Benevolenskaya and Maxim V. Frolov

624
GOLPH3 Links the Golgi, DNA Damage, and Cancer
Matthew D. Buschman, Juliati Rahajeng, and Seth J. Field

Priority Report

628
A Unique Subset of Epithelial Ovarian Cancers with Platinum Sensitivity and PARP Inhibitor Resistance
Raphael Ceccaldi, Kevin W. O’Connor, Kent W. Mouw, Adam Y. Li, Ursula A. Matulonis, Alan D. D’Andrea, and Panagiotis A. Konstantinopoulos

Microenvironment and Immunology

635
Accelerated Tumor Progression in Mice Lacking the ATP Receptor P2X7
Elena Adinolfi, Marina Capace, Alessia Franceschini, Simonetta Falzoni, Anna L. Giuliani, Alessandra Rotondo, Alba C. Sarti, Massimo Bonora, Susanne Syberg, Domenica Corigliano, Paolo Pinton, Niklas R. Jorgensen, Luigi Abelli, Laura Emionite, Lizzia Raffaghello, Vito Pistoia, and Francesco Di Virgilio

Molecular and Cellular Pathobiology

645
Prostaglandin E2 Inhibits p53 in Human Breast Adipose Stromal Cells: A Novel Mechanism for the Regulation of Aromatase in Obesity and Breast Cancer
Xuyi Wang, Maria M. Docanto, Hiromobu Sasano, Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer, Camden Lo, Evan R. Simpson, and Kristy A. Brown

Pricis: These results show that in addition to its conventional roles in cell-cycle arrest and apoptosis, p53 may also prevent mammary gland hyperplasia and dysplasia by inhibiting expression of aromatase in breast adipose stromal cells.

656
β-Catenin Promotes Regulatory T-cell Responses in Tumors by Inducing Vitamin A Metabolism in Dendritic Cells
Yuan Jong, Indumathi Manoharan, Amol Suryawanshi, Tanmay Majumdar, Melinda L. Angus-Hill, Pandelakis A. Koni, Balaji Manicasamy, Andrew L. Mellor, David H. Munn, and Santhakumar Manicasamy

Pricis: In this seminal study, yet another fundamental oncogenic pathway is linked to immune escape, a fundamental driver of malignant conversion that is coordinated with tumor growth, offering new opportunities to reposition cancer cell-centric therapeutic drugs in trials in which they may be more properly conceptualized as immunotherapeutic agents.

666
Genetic Mutation of p53 and Suppression of the miR-17–92 Cluster Are Synthetic Lethal in Non–Small Cell Lung Cancer due to Upregulation of Vitamin D Signaling

Pricis: These genetic findings suggest that vitamin D receptor agonists may be highly efficacious in p53 mutant lung cancers, a possibility with immediate implications for clinical evaluation.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Précis: Cancer survivors suffer from impaired cognition due to chemotherapy, a condition informally referred to as "chemobrain," but this very common side effect in cancer survivors has been little studied as an unmet medical need.</td>
<td></td>
</tr>
<tr>
<td>687</td>
<td>eIF4E Threshold Levels Differ in Governing Normal and Neoplastic Expansion of Mammary Stem and Luminal Progenitor Cells</td>
<td>Svetlana Avdulov, Jeremy Herrera, Karen Smith, Mark Peterson, Jose R. Gomez-Garcia, Thomas C. Beadnell, Kathryn L. Schwertfeger, Alexey O. Benyumov, I. Carlos Manivel, Shunan Li, Anja-Katrin Bielinsky, Douglas Yee, Peter B. Bitterman, and Vitaly A. Polunovskiy</td>
</tr>
<tr>
<td></td>
<td>Précis: eIF4E overexpression, which occurs widely in cancer, appears to enable cells to evade DNA damage checkpoints, a feature that is associated with threshold levels but not changes in RNA cap-binding capabilities as might have been suspected.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Précis: This study develops a simple paired biomarker for the p53 pathway in breast cancer, rendering it more clinically useful for predicting metastatic progression and patient prognosis.</td>
<td></td>
</tr>
<tr>
<td>709</td>
<td>HOXB7 Promotes Malignant Progression by Activating the TGFβ Signaling Pathway</td>
<td>Shou Liu, Rodeok Jin, Yvonne Hui, Jie Fu, Chunfa Jie, Sheng Feng, David Reisman, Qian Wang, Daping Fan, Sarasawi Sukum, and Hexin Chen</td>
</tr>
<tr>
<td></td>
<td>Précis: These findings reveal a mechanism that is required not only to promote cancer cell invasion and migration, but also to recruit and activate immunosuppressive tumor-associated macrophages in the tumor microenvironment.</td>
<td></td>
</tr>
</tbody>
</table>

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>720</td>
<td>Reprogramming of the ERRα and ERα Target Gene Landscape Triggers Tamoxifen Resistance in Breast Cancer</td>
<td>Verena Thewes, Ronald Simon, Petra Schroeter, Magdalena Schlottter, Tobias Anzender, Reinhard Buttnner, Vladimir Benes, Guido Sauter, Barbara Burwinkel, Robert I. Nicholson, Hans-Peter Sinn, Andreas Schneeweiss, Ulrich Deuschle, Marc Zapatka, Stefanie Heck, and Peter Lichter</td>
</tr>
<tr>
<td></td>
<td>Précis: These findings suggest that activation of the estrogen-related receptor ERRα promotes resistance to antiendocrine therapy in breast cancer and provide a rationale to explore this receptor as a drug target for mitigating the endocrine-resistant phenotype in patients.</td>
<td></td>
</tr>
<tr>
<td>732</td>
<td>BRCA2-Deficient Sarcomatoid Mammary Tumors Exhibit Multidrug Resistance</td>
<td>Janneke E. Jaspers, Wendy Sol, Ariena Kersbergen, Andreas Schlicker, Charlotte Guyader, Guotai Xu, Lodewyk Wessels, Piet Storm, Jos Jonkers, and Sven Rottenberg</td>
</tr>
<tr>
<td></td>
<td>Précis: Epithelial-to-mesenchymal transition in murine tumors is associated with an acquisition of multidrug resistance due to increased expression of genes encoding drug efflux transporters.</td>
<td></td>
</tr>
</tbody>
</table>

TUMOR AND STEM CELL BIOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>742</td>
<td>ERK5 Is a Critical Mediator of Inflammation-Driven Cancer</td>
<td>Katherine G. Finegan, Diana Perez-Madrigal, James R. Hitchin, Clare C. Davies, Allan M. Jordan, and Cathy Tournier</td>
</tr>
<tr>
<td></td>
<td>Précis: These findings highlight a kinase that fosters chronic inflammation in the setting of carcinogenesis, a key issue in understanding how an inflamed microenvironment supports cancer progression.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Précis: This study shows how miRNA misregulation of a member of the SWI/SNF chromatin remodeling family contributes to the development of infection-associated stomach cancers.</td>
<td></td>
</tr>
</tbody>
</table>
Suppressing TGFβ Signaling in Regenerating Epithelia in an Inflammatory Microenvironment Is Sufficient to Cause Invasive Intestinal Cancer

Hiroko Oshima, Mizuho Nakayama, Tae-Su Han, Kuniko Naoi, Xiaoli Ju, Yusuke Maeda, Sylvie Robine, Kiichiro Tsuchiya, Toshiro Sato, Hiroshi Sato, Makoto Mark Takeo, and Masanobu Oshima

Précis: These provocative results show how invasive colon cancers can develop simply as a result of chronic inflammation that engenders evolution of immune escape, alongside epithelial cell regeneration that seeks to restore colonic tissue in the face of ongoing inflammation.

LETTER TO THE EDITOR

Cep63 recruits Cdk1 to the Centrosome—Letter
Mohammad Alsara, Harald Löffler, Anne Fechter, Jiri Bartek, and Alwin Krämer

CORRECTION

Correction: AIMP3 Haploinsufficiency Disrupts Oncogene-Induced p53 Activation and Genomic Stability

ABOUT THE COVER

Human neural stem cell (hNSC) transplantation reverses chemotherapy-induced cognitive dysfunction through a mechanism involving the preservation of host neuronal morphology. The image shows Golgi-Cox impregnated neurons in the hippocampus of rats treated with chronic cyclophosphamide and engrafted with hNSCs. Disruptions to overall granule cell and CA1 pyramidal cell neuronal architecture caused by cyclophosphamide were ameliorated in the brains of rats receiving hNSC transplantation when analyzed 2 months posttransplantation. For further details, see article by Acharya and colleagues on page 676.
Cancer Research

75 (4)

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/75/4

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.