Table of Contents

BREAKING ADVANCES

- 781 Highlights from Recent Cancer Literature

REVIEWS

- 783 Signaling-Mediated Regulation of MicroRNA Processing
 Jia Shen and Mien-Chie Hung
- 792 Fearful Symmetry: Subversion of Asymmetric Division in Cancer Development and Progression
 Jeevisha Bajaj, Bryan Zimdahl, and Tannishtha Reya
- 798 The Emerging Protumor Role of γδ T Lymphocytes: Implications for Cancer Immunotherapy
 Margarida Rei, Daniel J. Pennington, and Bruno Silva-Santos

PERSPECTIVES

- 803 Breast Cancer Prevention: Lessons to be Learned from Mechanisms of Early Pregnancy–Mediated Breast Cancer Protection
 Fabienne Meier-Abt, Mohamed Bentires-Alj, and Christoph Rochlitz
- 808 Redundancy: A Critical Obstacle to Improving Cancer Therapy
 Orit Lavi

MICROENVIRONMENT AND IMMUNOLOGY

- 813 Akt–Girdin Signaling in Cancer-Associated Fibroblasts Contributes to Tumor Progression
 Yumiko Yamamura, Naoya Asai, Atsushi Enomoto, Takuya Kato, Shinji Mii, Yuji Kondo, Kaori Ushida, Koaru Niimi, Nobuyuki Tsunoda, Masato Nagino, Shu Ichihara, Koichi Furukawa, Kengo Maeda, Toyohiko Murohara, and Masahide Takahashi
 Précis: Tumor pathogenesis relies upon P38/Akt signaling not only in tumor cells but also in cells of the tumor microenvironment, as shown here in cancer-associated fibroblasts through a mechanism involving activation of an actin-binding protein that drives the invasive behavior of nearby cancer cells.

- 824 ERAP1 Regulates Natural Killer Cell Function by Controlling the Engagement of Inhibitory Receptors
 Loredana Cifaldi, Paolo Romani, Michel Faço, Silvia Lorenzi, Raffaella Meazza, Stefania Petroni, Marco Andreani, Daniela Pende, Franco Locatelli, and Dorianna Pucci
 Précis: This study identifies a protease responsible for trimming MHC class I-bound peptides in cancer cells as a target for regulating NK-cell immunity, with implications for improving outcomes of NK cell–based immunotherapeutic strategies.

- 835 Genetic and Pharmacological Inactivation of the Purinergic P2RX7 Receptor Dampens Inflammation but Increases Tumor Incidence in a Mouse Model of Colitis-Associated Cancer
 Paul Hofman, Julien Cherfils-Vicini, Marie Bazin, Marius Ilie, Thierry Juhel, Xavier Hébunerme, Eric Gilson, Annie Schmid-Alliana, Olivier Boyer, Sahil Adiroich, and Valérie Vouret-Craviari
 Précis: These timely and provocative findings suggest cautions in the clinical development of P2RX7 antagonists to treat inflammatory bowel disease, highlighting a need for additional investigations to gain a more complete understanding of how P2RX7 may influence risks in the development of inflammation-associated colon cancer.

- 846 Long Noncoding RNA HULC Modulates Abnormal Lipid Metabolism in Hepatoma Cells through an miR-9–Mediated RXRA Signaling Pathway
 Ming Cui, Zelin Xiao, Yue Wang, Minying Zheng, Tianqiang Song, Xiaoli Cai, Baodi Sun, Lihong Ye, and Xiaodong Zhang
 Précis: These results elucidate a long noncoding RNA–facilitated pathway of aberrant lipid metabolism that contributes to the development of liver cancer, with potential clinical implications for its prevention and management.
Single-Strand DNA-Binding Protein SSB1 Facilitates TERT Recruitment to Telomeres and Maintains Telomere G-Overhangs
Raj K. Pandita, Tracy T. Chow, Durga Udayakumar, Amanda L. Bain, Liza Cubeddu, Clayton R. Hunt, Wei Shi, Nobuo Horikoshi, Yong Zhao, Woodring E. Wright, Kum Kum Khanna, Jerry W. Shay, and Tej K. Pandita

Précis: These findings offer an explanation for how telomerase is recruited to telomeres, a critical step in maintaining telomere ends and cell viability in all cancer cells.

A Central Role for Heme Iron in Colon Carcinogenesis Associated with Red Meat Intake

Précis: Elevated risk of colon cancer associated with red meat consumption is linked to heme iron, which may initiate carcinogenesis by enabling lipid peroxidation, providing a possible etiologic basis to understand this connection.

Crosstalk between KIT and FGFR3 Promotes Gastrointestinal Stromal Tumor Cell Growth and Drug Resistance
Nathalie Javidi-Sharifi, Elie Traer, Jacqueline Martinez, Anu Gupta, Takehiro Taguchi, Jennifer Dunlap, Michael C. Heinrich, Christopher L. Corless, Brian P. Rubin, Brian J. Druker, and Jeffrey W. Tyner

Précis: These findings provide a mechanistic rationale for use of existing FGFR inhibitors and multikinase inhibitors that target FGFR3 as strategies to improve treatment of gastrointestinal stromal tumors that exhibit resistance to imatinib mesylate, with immediate implications for clinical evaluation.

Establishment and Characterization of a Cell Line from Human Circulating Colon Cancer Cells
Laure Cayrefourcq, Thibault Mazard, Simon Joosse, Jérôme Solassol, Jeanne Ramos, Eric Assenat, Udo Schumacher, Valerie Costes, Thierry Maudelonde, Klaus Pantel, and Catherine Alix-Panabières

Précis: The analysis of circulating tumor cells will contribute to personalized medicine by tailoring anticancer therapies to the genetic and phenotypic characteristics of metastatic cells in individual cancer patients.
ABOUT THE COVER

The high concentration of extracellular ATP in inflammatory lesions activates the purinergic P2RX7 receptor, which is expressed on immune and nonimmune cells of the gastrointestinal tract. The P2RX7 receptor participates in the initiation as well as the regulation of the inflammatory response and consequently can favor colon carcinogenesis. Using both genetic and pharmacological models of P2RX7 inactivation, we found that P2RX7 acted at an early stage to suppress the development of colitis-associated cancer. For details, see the article by Hofman and colleagues on page 835.
Cancer Research

75 (5)

| Updated version | Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/75/5 |

E-mail alerts	Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions	To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions	To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.