p21 Ablation in Liver Enhances DNA Damage, Cholestasis, and Carcinogenesis

Haksier Ehedego, Mark V. Boekschoten, Wei Hu, Carina Doler, Johannes Haybaeck, Nikolaus Gaßler, Michael Müller, Christian Liedtke, and Christian Trautwein

Abstract

Genetic mouse studies suggest that the NF-κB pathway regulator NEMO (also known as IKKγ) controls chronic inflammation and carcinogenesis in the liver. However, the molecular mechanisms explaining the function of NEMO are not well defined. Here, we report that overexpression of the cell-cycle regulator p21 is a critical feature of liver inflammation and carcinogenesis caused by the loss of NEMO. NEMO^{−/−} mice develop chronic hepatitis characterized by increased hepatocyte apoptosis and proliferation that causes the development of fibrosis and hepatocellular carcinoma (HCC), similar to the situation in human liver disease. Having identified p21 overexpression in this model, we evaluated its role in disease progression and LPS-mediated liver injury in double mutant NEMO^{−/−}/p21^{−/−} mice. Eight-week-old NEMO^{−/−}/p21^{−/−} animals displayed accelerated liver damage that was not associated with alterations in cell-cycle progression or the inflammatory response. However, livers from NEMO^{−/−}/p21^{−/−} mice displayed more severe DNA damage that was further characterized by LPS administration correlating with higher lethality of the animals. This phenotype was attenuated by genetic ablation of the TNF receptor TNF-R1 in NEMO^{−/−}/p21^{−/−} mice, demonstrating that DNA damage is induced via TNF. One-year-old NEMO^{−/−}/p21^{−/−} mice displayed greater numbers of HCC and severe cholestasis compared with NEMO^{−/−} animals. Therefore, p21 overexpression in NEMO^{−/−} animals protects against DNA damage, acceleration of hepatocarcinogenesis, and cholestasis. Taken together, our findings illustrate how loss of NEMO promotes chronic liver inflammation and carcinogenesis, and they identify a novel protective role for p21 against the generation of DNA damage.

Cancer Res; 75(6); 1144–55. ©2015 AACR.

Introduction

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and represents the third leading cause of cancer-related mortality (1). HCC develops when the balance between cell proliferation and cell death is disrupted, and the subsequent aberrant proliferation leads to tumor growth. Cell proliferation is controlled by protein kinase complexes consisting of cyclins and cyclin-dependent kinases (Cdks), which regulate distinct phases of the cell cycle.

p21 is involved in numerous growth-inhibitory pathways as shown in cell culture systems and in vivo (2). For example, embryonic fibroblasts lacking p21 expression are significantly impaired in their ability to arrest in G₁-phase in response to DNA damage (3), and in vivo experiments with p21 knockout mice (p21^{−/−}) revealed earlier hepatocyte DNA synthesis, cyclin/CDK kinase activation, and S-phase gene expression compared with wild-type mice in the partial hepatectomy (PH) model (4). In contrast, after PH mice with hepatic p21 overexpression displayed impaired hepatocyte proliferation (5).

p21 has been considered as a tumor suppressor because p21^{−/−} mice display spontaneous tumor formation after 16 months and additionally these mice are more sensitive to chemically induced carcinogenesis (6, 7).

However, deletion of p21 does not necessarily promote tumor growth and a potential function as an oncogene has also been described. These assumptions are based on human studies as it has been shown that p21 is upregulated during inflammation and fibrosis in chronic liver diseases, and high p21 expression is linked to hepatocarcinogenesis in cirrhotic patients (8, 9). An oncogenic function for p21 has also been proposed in animal models. Mice deficient for p53 spontaneously develop multiple tumors while additional deletion of p21 in p53-deficient mice increases the survival of these mice from 6 to 9 months and for instance leads to a significant reduction of thymic lymphomas (10).

From these data at present the role of p21 in tumorigenesis is not clearly defined. In this study, we thus used the NEMO^{−/−} model to investigate the role of p21 during inflammation-driven liver carcinogenesis. The NEMO^{−/−} model is of specific interest as loss of NEMO immunoreactivity in liver cells is also found in a substantial proportion of human HCCs and in the mouse model, it resembles stage-dependent evolution of chronic liver disease as also found in humans, leading to fibrosis progression and the occurrence of HCC (1, 11, 12).
Our group showed that deletion of NEMO in hepatocytes triggers increased p21 expression (13). In this study, we aimed to investigate whether p21 overexpression in NEMO^{hepa} livers has a tumor suppressive or oncogenic function. We demonstrate here that p21 overexpression is protective in this model, as hepatocarcinogenesis and cholestasis are significantly enhanced upon deletion of p21 in NEMO^{hepa} mice. Therefore, our study defines p21 as a tumor suppressor in this inflammation-triggered model for liver carcinogenesis.

Materials and Methods

Animal approach

Mice were housed and treated in accordance with the guidelines of the National Academy of Sciences (NIH publication 86-23 revised 1985) and breed in the animal facility of the University Hospital RWTH Aachen. Animal studies were approved by the regional authorities for nature, environment, and consumer protection of the state North Rhine-Westphalia (LANIV).

NEMO^{hepa} and p21^{−/−} mice were generated as previously described (3, 12). Double knockout mice (NEMO^{hepa}/p21^{−/−}) were generated by crossing NEMO^{hepa} mice with p21^{−/−} mice. NEMO^{hepa}/TNF-R1^{−/−} mice were generated as previously described (14) and crossed with NEMO^{hepa}/p21^{−/−} mice to generate triple knockout mice (NEMO^{hepa}/p21^{−/−}/TNF-R1^{−/−} mice). All strains were kept in a C57BL/6J background.

Examinations were performed at the age of 8, 26, and 52 week. Liver weight and body weight were recorded; serum and liver tissue were collected.

Liver injury model

Experiments were performed on 8-week-old male mice. Lipopolysaccharide (LPS; Sigma) was injected i.p. at a concentration of 25 µg/10 g body weight and mice were sacrificed 7 hours later. For the survival experiments, female mice at the age of 8 to 10 weeks were used and observed for 12 hours.

Immunofluorescence stainings

Immunofluorescence staining was performed on frozen liver sections. For bromodeoxyuridine (BrdUrd) staining mice had to be injected with BrdUrd (AppliChem) 2 hours before sacrificing.

Hepatocyte proliferation, cell death, and DNA double-strand breaks (DSB) were quantified by counting the number of nuclei positive for either Ki67, BrdUrd, terminal deoxynucleotidyl transferase-mediated diUTP nick end labeling (TUNEL), or phospho-H2AX relative to the total nuclei per power field (200×) stained with 4′,6-diamidino-2-phenylindole (DAPI). Stained microscopic images were acquired with a Zeiss Axio Imager.Z1 microscope, AxioCam MRm or AxioCam ICc3 camera using Axiovision 4.8 software (all from Carl Zeiss, Inc.).

Microarray analysis

One hundred nanogram of total RNA was labeled with the Ambion WT expression kit (Life Technologies) and hybridized on Affymetrix GeneChip Mouse Gene 1.0 ST arrays according to the manufacturer’s instructions. Data were normalized with the Robust Multi-Array Average (RMA) method and probe sets were annotated to Entrez ID’s according to Dai and colleagues (15–17). Genes were filtered on an intensity level of at least 20 in at least two samples and an interquartile range >0.2 (log₂ scale). Intensity based–moderated t-statistics were used to calculate significant differences (18). All data were analyzed using an in-house developed system (19). Data are available in the Gene Expression Omnibus (GEO accession number: GSE61100).

Statistical analysis

Data are presented as mean ± standard deviation of the mean. Statistical significance was determined by the Students t test.

Results

p21 overexpression protects NEMO^{hepa} mice from severe liver injury

Deletion of NEMO in hepatocytes triggers apoptosis and compensatory proliferation in the liver. Unexpectedly, the Cdk inhibitor, p21, known to inhibit cell-cycle proliferation, is overexpressed under these conditions (Fig. 1A). To characterize the role of p21 for progression of chronic liver injury, we generated NEMO^{hepa}/p21^{−/−} double knockout mice (Fig. 1A and Supplementary Fig. S1A).

p21 overexpression in NEMO^{hepa} livers is protective as its loss leads to an increase in serum aspartate-aminotransferase (AST) levels in NEMO^{hepa}/p21^{−/−} compared with NEMO^{hepa} animals (Fig. 1B). Because of its known role in cell-cycle control, we next investigated the impact on hepatocyte proliferation by studying the expression of proteins involved in cell-cycle regulation. Quantitative real-time PCR (qRT-PCR) analysis revealed increased mRNA expression levels of cell-cycle mediators controlling late G1- and S-phase progression such as cyclin A2 (CcnA2), cyclin E2 (CcnE2), E2F1, and E2F2 in NEMO^{hepa}/p21^{−/−} livers (Supplementary Fig. S2A–S2E). Overexpression of CcnA2 and E2F1 was confirmed by Western blot analysis, which also showed a downregulation of the mitogen-inducible cyclin D (CcnD) in p21-deleted NEMO^{hepa} livers (Fig. 1C).

Unpredicted, elevation of the S-phase marker CcnA2 was not accompanied by an increase in hepatocyte proliferation, as evidenced by quantification of BrdUrd incorporation (Fig. 1D) and Ki67 staining (Supplementary Fig. S2F), showing no significant differences between NEMO^{hepa} and NEMO^{hepa}/p21^{−/−} livers. To further explore this finding, we measured kinase activity of Cdk 2, which is the binding partner of CcnA2 and CcnE2. Cdk2 kinase activity was only slightly detectable in NEMO^{hepa} and p21^{−/−} controls. In contrast, we detected increased kinase activity in both NEMO^{hepa} and NEMO^{hepa}/p21^{−/−} livers to approximately the same extend, thereby confirming that loss p21 did not affect basal hepatocyte proliferation in NEMO-deficient livers (Fig. 1E).

Expression of DSB markers such as DNA replication and nucleotide excision repair. Western blot analysis for PCNA did not show any significant differences in its expression between NEMO^{hepa} and NEMO^{hepa}/p21^{−/−} livers (Supplementary Fig. S2G).

As deletion of p21 had no impact on DNA replication, we examined potential mechanisms, which might explain the lack of an increase in DNA replication in NEMO^{hepa}/p21^{−/−} livers. We thus investigated the protein expression of the Cdk inhibitors p27 and p18 by Western blot analysis. NEMO^{hepa}/p21^{−/−} livers revealed slightly increased p27 phosphorylation and additionally p18 was upregulated (Fig. 1F). Thus, loss of p21 is likely compensated by modulation of alternate cell-cycle inhibitors, which best explains the unchanged basal cell-cycle activity in NEMO^{hepa}/p21^{−/−} livers.
Figure 1.
Increased injury in livers of NEMO^{shp}/p21^{-/-} mice is not associated with changes in hepatocyte proliferation. A, Western blot analysis of whole liver extracts was performed using p21 antibody. GAPDH was used as a loading control. AST serum levels (B) and Western blot analysis (C) of whole liver extracts using E2F1, CcnA, and CcnD antibody are shown. GAPDH was used as a loading control. D, BrdUrd stainings are presented (lighter nuclei are BrdUrd-positive cells; darker nuclei are nuclei that were stained with DAPI; magnification, ×200). E, Cdk2 kinase assay is depicted. F, Western blot analysis of whole liver extracts using p-p27 and p18 antibody were performed. GAPDH was used as a loading control. Values are mean ± SD; n = 5 animals/time point; *, P < 0.05 (NEMO⁺ vs. p21^{-/-}, NEMO^{shp} vs. NEMO^{shp}/p21^{-/-}). For immunofluorescence staining, 6 to 10 sections were quantified.
Lack of p21 expression in NEMODhepa mice triggers increased DNA damage

DNA damage induces p53 phosphorylation, which consecutively increases p21 transcription, thereby blocking G\(_1\)–S-phase transition and replication of damaged DNA. Thus, we next investigated whether this mechanism might be activated in NEMODhepa/p21--/-- livers. We found an upregulation of p53 phosphorylation in NEMODhepa/p21--/-- compared with NEMODhepa livers. In addition, the phosphorylation of c-Jun N-terminal kinases (JNK) was increased most likely as a response to increased genotoxic stress (Fig. 2A).

We previously demonstrated that NEMODhepa livers display mild DNA double-strand breakage (13). On the basis of the shown differences in NEMODhepa/p21--/-- livers, we next focused more specifically on the relevance of p21 deletion for DNA damage in these mice. Loss of p21 expression strongly and...
significantly enhanced DNA damage in NEMO^{shpα}/p21^{−/−} compared with NEMO^{shpα} livers as evidenced by pH2AX staining (Fig. 2B). To better characterize these findings, we performed array analysis to detect changes in the expression of genes involved in DNA damage. Interestingly, we found an upregulation of the DNA checkpoint kinase Chk2 and further genes involved in DNA repair such as the transcription factor FoxM1 and the recombinase Rad51 in NEMO^{shpα}/p21^{−/−} compared with NEMO^{shpα} livers (Fig. 2C). FoxM1 controls the expression of the DNA repair gene Rad51, and Rad51, in turn, interacts with the tumor-suppressor BRCA1. A strong and significant mRNA upregulation of the DNA damage marker BRCA1 was observed in NEMO^{shpα}/p21^{−/−} livers (Fig. 2D). Hence, our results demonstrated that after loss of p21 expression in NEMO^{shpα} livers the DNA damage as well as the expression of genes involved in DNA repair were increased. The enhanced DNA damage in the double knockout mice also explains the increased liver damage (Fig. 1B).

Inflammation is ameliorated in the absence of p21 in the NEMO^{shpα} liver

The inflammatory response leading to chronic hepatitis is important to drive liver disease progression in NEMO^{shpα} mice. CD45 immunohistochemistry pointed to a strong inflammatory response in NEMO^{shpα} livers. Unexpectedly, p21 deletion reduced CD45 staining in NEMO^{shpα}/p21^{−/−} livers (Fig. 3A). This finding was further confirmed by qRT-PCR (Supplementary Fig. S3). The infiltrating cells were also positive for the macrophage marker F4/80 (Fig. 3B). In addition, these findings were associated with a

Figure 3. Inflammation is attenuated in p21-deficient NEMO^{shpα} mice. A, CD45 staining was performed (brown, CD45-positive cells; blue, nuclei; magnification, ×100). B, F4/80 staining (red, F4/80-positive cells; blue, nuclei that were stained with DAPI; magnification, ×200). C and D, qRT-PCR of liver mRNA was determined for TNF (C) and TIMP3 (D). Values are mean ± SD; n = 5 animals/time point; **, P < 0.05; **, P < 0.01 (NEMOF/f vs. p21^{−/−}, NEMO^{shpα} vs. NEMO^{shpα}/p21^{−/−}). For immunofluorescence staining, 6 to 10 sections were quantified.
reduced expression of TNF and upregulation of its negative regulator TIMP3 (Fig. 3C and D). Together, these findings suggest that the inflammatory response is reduced in NEMO^{Δhepa}/p21^{−/−} livers arguing that the changes in DNA damage might be relevant to explain the phenotype of NEMO^{Δhepa}/p21^{−/−} livers.

p21 deletion increases the sensitivity toward DNA damage

LPS has been shown to induce DNA strand breakage (20). Therefore, we tested whether loss of p21 expression increases sensitivity against LPS-driven DNA damage. In WT animals, (NEMO^{Δhepa}) minor DNA double-strand breakage, as detected by pH2AX staining, was observed after LPS stimulation (Fig. 4A). In p21^{−/−} livers, the amount of pH2AX-positive cells was significantly increased, indicating that p21 is involved in mediating protection against DNA damage. In NEMO^{Δhepa} livers, LPS triggered strong DNA damage, which was significantly enhanced in NEMO^{Δhepa}/p21^{−/−} livers. These findings further support our idea that p21 counteracts DNA damage in NEMO-deficient hepatocytes.

Next, we tested the impact of LPS stimulation on liver injury. In agreement with our previous studies, NEMO^{Δhepa} mice showed a severe increase in ALT and AST levels after LPS treatment, which...
was nearly doubled in NEMO^{hepa}/p21^{−/−} animals (Fig. 4B and Supplementary Fig. S5A). This observation was also reflected in liver histology as determined by H&E staining. Here, NEMO^{hepa}/p21^{−/−} animals showed severe hemorrhages within the liver tissue, which was not evident in NEMO^{hepa} livers and the respective controls (Fig. 4C). To further characterize the mode of cell death, we performed TUNEL staining and found that the number of TUNEL-positive areas was significantly highest in NEMO^{hepa}/p21^{−/−} livers, suggesting that the increase in DNA damage and higher liver injury was associated with increased apoptosis (Fig. 4D).

To characterize the inflammatory response after LPS stimulation, we performed qRT-PCR analysis for IL1β expression. Interestingly, we found significant IL1β downregulation in p21 single knockout mice after LPS stimulation. However, no significant difference was found between NEMO^{hepa} single and double knockout mice showing a comparable reactivity after LPS stimulation (Supplementary Fig. S4A). Furthermore, we analyzed IL6 expression levels by qRT-PCR and found that NEMO^{hepa} and NEMO^{hepa}/p21^{−/−} livers also showed comparable IL6 levels (Supplementary Fig. S4B). As IL1β and IL6 regulation are not different between both mouse strains after LPS stimulation, these results indicate that the higher sensitivity of NEMO^{hepa}/p21^{−/−} hepatocytes also explain the higher mortality of these animals.

The oxidative stress response in the liver of LPS-treated mice was measured by CM-H₂DCFDA staining to detect reactive oxygen species (ROS; Supplementary Fig. S4C). The presence of oxidative stress in NEMO^{hepa} livers has been already described in our previous studies (11, 13). Our present result shows that p21 deletion itself does not cause ROS accumulation. We did observe by CM-H₂DCFDA staining that NEMO^{hepa} and NEMO^{hepa}/p21^{−/−} mice have elevated ROS levels in comparison with control mice (NEMO^{WT} and p21^{−/−}). However, deleting p21 in NEMO^{hepa} mice did not enhance ROS production in the liver. This has been observed in LPS-treated (Supplementary Fig. S4C) and untreated mice (data not shown). The microscopic pictures of the LPS-treated group are included in Supplementary Fig. S4. Therefore, we conclude that oxidative stress does not account for higher DNA damage in NEMO^{hepa}/p21^{−/−} livers.

Recently, we have described that TNF-R1 deletion in NEMO^{hepa} livers rescues hepatocyte injury and apoptosis (14). Therefore, we crossed NEMO^{hepa}/p21^{−/−} with TNF-R1^{−/−} animals to generate NEMO^{hepa}/p21^{−/−}/TNF-R1^{−/−} mice (Supplementary Fig. S1B).

We stimulated NEMO^{hepa}/NEMO^{hepa}/p21^{−/−}, NEMO^{hepa}/p21^{−/−}/TNF-R1^{−/−}, and respective controls with LPS. Seven hours after LPS stimulation, TNF-R1^{−/−} deletion resulted in a substantial improvement in liver injury compared with NEMO^{hepa} and NEMO^{hepa}/p21^{−/−} mice (Supplementary Fig. S5B). H&E staining demonstrated that acute liver hemorrhage was completely prevented in triple knockout mice (Supplementary Fig. S5C). In addition, DNA double-strand breakage was significantly reduced after TNF-R1 deletion in NEMO^{hepa}/p21^{−/−} livers (Supplementary Fig. S5D). Importantly, 57% of NEMO^{hepa}/p21^{−/−} mice did not survive the first 7 hours after LPS stimulation, while none of the WT mice and only 14% of the NEMO^{hepa} animals died during this observation period. Interestingly, deletion of TNF-R1 was highly beneficial as all NEMO^{hepa}/p21^{−/−}/TNF-R1^{−/−} animals survived the challenge (Supplementary Fig. S5E). This suggests that the LPS-hypersensitivity due to lack of p21 is mediated via TNF-dependent signaling.
Discussion

The role of p21 in tumorigenesis is not fully understood. Convincing studies demonstrated that p21 can act as an oncogene as well as a tumor suppressor. In this study, we aimed to investigate the relevance of p21 for hepatocarcinogenesis in the NEMO^{defa} mouse model. This model is of clinical interest as these animals develop a cascade of events as also found in humans, which leads from chronic hepatitis to liver cirrhosis and growth of hepatocellular carcinomas (HCC). Interestingly, we found in human HCC that NEMO is downregulated thus indicating that results found in NEMO^{defa} livers might have a direct relevance for human liver diseases (1).

In former studies we found in NEMO^{defa} livers an overexpression of the cell-cycle inhibitor p21 (13). To study its relevance for disease progression, we generated NEMO^{defa}/p21^{−/−} double knockout mice and examined the relevance of p21 deletion for disease progression and its sensitivity toward LPS-induced liver injury.

Because p21 is a cell-cycle inhibitor, we first investigated the impact on cell proliferation in NEMO^{defa}/p21^{−/−} livers. Interestingly in 8-week-old animals p21 deletion had no influence on the proliferation of hepatocytes. This was an unexpected result because p21 binds to CcnE/cdk2 and CcnA/cdk2 complexes thereby preventing progression from G₁ to S-phase. At present we propose that loss of p21 expression is compensated by the...
increased activity of other cell-cycle inhibitors such as p-p27 and p18, which is supported by our present data. Furthermore, we found that deletion of p21 in NEMOhepa mice was beneficial in terms of inflammation as there was a clear amelioration of inflammatory cells and cytokines (TNF) in NEMOhepa/p21-/- livers. Reduced TNF expression is most likely caused by increased TIMP3 levels in the livers. TIMP3 is able to inhibit TACE, a protease that generates soluble TNF from the cell surface form of the cytokine (21). Hence, TIMP3 is an important negative TNF regulator (22). As a consequence of reduced cytokine production, the mitogenic stimulation of CcnD was decreased in 8-week-old NEMOhepa/p21-/- livers. Despite a reduced inflammatory response, the loss of p21 expression triggered increased liver injury in NEMOhepa mice, which was reflected by elevated serum transaminases (AST). Further analysis revealed that increased liver injury in the double knockout mice is mediated through enhanced DNA damage. As a consequence of higher DNA damage, the expression of important mediators for DNA repair (BRCA1, RAD51 and FoxM1) were enhanced in NEMOhepa/p21-/- livers. However, several recent studies suggested that overexpression of DNA repair proteins is associated with a disadvantage for the treatment of breast cancer, glioblastoma multiforme and human soft tissue sarcoma cells, as they mediate resistance to chemotherapy. This has been
nicely shown for FoxM1 and RAD51 mediating resistance against chemotherapeutics like Doxorubicin (23–26). Thus, these findings indicated that loss of p21 in NEMO^{Δhepa} liver may lead to more aggressive disease progression and likely a higher rate of HCCs.

A responsible mechanism for exacerbation of DNA damage in p21-deficient NEMO^{Δhepa} mice could be the elevated expression of CcnA2 and CcnE2, which did not cause enhanced hepatocyte proliferation in 8-week-old animals. Recent publications showed that ectopic overexpression of CcnA or CcnE in mouse embryonic fibroblast (MEFs) lead to an increase in DNA double-strand breakage (27). The observed downregulation of CcnA, a protein also known to be involved in DNA-repair mechanisms (28), might additionally contribute to enhanced DNA damage in NEMO^{Δhepa}/p21^{−/−} livers (28).

Hepatocyte-specific deletion of NEMO inhibits activation of NF-κB and causes substantial apoptosis in the liver after LPS-injection (11). p21 has an additional function in the suppression of autoimmunity and in the inhibition of apoptosis (29, 30). We therefore investigated if p21 overexpression in NEMO^{Δhepa} livers can provide protection after challenging the animals with LPS.

Our LPS experiments strongly suggest that p21 has a yet unknown function in protecting from DNA damage. As LPS-dependent cytotoxicity is mainly mediated through TNF, we tested if the p21-dependent effect on DNA damage is also related to this pathway and deleted TNF-R1 in NEMO^{Δhepa/p21} mice. The triple knockout mice (NEMO^{Δhepa/p21}/TNF-R1^{−/−}) showed a massive staining in DNA damage and cell death. In addition, AST serum values and liver histology was significantly improved. Finally, all triple knockout mice survived the LPS challenge, suggesting that the LPS-dependent effect on DNA damage in p21 deleted animals is mediated via TNF.

As p21 deletion triggered higher DNA damage, resulting in higher liver injury, we examined the relevance for spontaneous hepatocarcinogenesis in aging mice. Here, the protective role of p21 was already visible in NEMO^{Δhepa} mice at the age of 26 weeks. Double knockout mice at this age had already a higher liver weight/body weight ratio and more frequently showed small tumors. At this age p21 deletion also resulted in enhanced hepatocyte proliferation as evidenced and quantified by Ki67 staining. Finally, loss of p21 overexpression caused exacerbation of hepatocarcinogenesis, which resulted in a significantly increased number of HCCs in 52-week-old animals. Interestingly, only the number of HCC nodules was increased and not the size of the tumors itself, suggesting that the loss of p21 has more impact on tumor initiation than on tumor progression.

In a study of Maeda and colleagues (31) was shown that a brief oral administration of an antioxidant (BHA, butylated hydroxanisole) around the time of DEN exposure prevented excessive DEN-induced carcinogenesis in lkk^{−/−} mice. In our chronic model, ROS production is not the cause for enhanced hepatocarcinogenesis in NEMO^{Δhepa/p21} mice, because we did not observe enhanced ROS levels compared with NEMO^{Δhepa} single knockout mice.

p21 has been recently shown to promote hepatocarcinogenesis in chronic cholestatic liver injury, as loss of p21 in Mdr2^{−/−} mice significantly delayed tumor development (32). Mdr2^{−/−} mice are lacking the Abc4 protein, which is encoded by the multidrug resistance-2 gene; as a consequence, they develop chronic periductular inflammation and cholestatic liver disease, resulting in the development of HCC. Inhibition of NF-κB by expression of an IkB super-repressor (IkBαSR) transgene in hepatocytes has been shown to strongly reduce HCC development in Mdr2^{−/−} mice, suggesting that NF-κB acts as a tumor promoter in the Mdr2^{−/−} model (33). Whereas in the NEMO^{Δhepa} model used in our study, the lack of NFκB activation in hepatocytes leads to HCC development. This suggests that the role of p21 to act as an oncogene or tumor suppressor depends on NFκB.

In addition, disease progression in NEMO^{Δhepa/p21} livers was associated with the occurrence of a cholestatic phenotype. As oval cells can differentiate into hepatocytes and cholangiocytes, we analyzed CK19-positive cells. Analysis of HCCs obtained from NEMO single and double knockout mice showed an expression of CK19-positive cells, which in NEMO^{Δhepa} HCCs were located around bile ducts, while was spread diffusely throughout the tissue in HCCs of NEMO^{Δhepa/p21} mice. CK19-positive HCCs are known to be more malignant than CK19-negative HCCs, due to the high recurrence frequency after operative resection in patients (34). Especially primary liver cancers with a more biliary phenotype are known to have a poorer prognosis after surgical resection (35). Furthermore, it is assumed that activation of the oval cell compartment in a setting of chronic injury initiates or promotes HCC development (36). Strong oval cell activation has been found in preneoplastic livers of Mdr2^{−/−} mice, which was severely impaired in Mdr2^{−/−}Rage^{−/−} mice and results in reduced HCC formation (36).

In summary, our results demonstrate that p21 overexpression in NEMO^{Δhepa} mice reduces liver disease progression. Importantly, our results show that p21 is involved in protecting from DNA damage triggered by the inflammatory stress found in these livers, which was further supported by our LPS experiments. As evidenced in the aging experiments, these changes are associated with increased tumor initiation but not increased tumor progression. Thus, we describe for the first time an additional protective function of p21 against DNA damage.

Disclosure of Potential Conflicts of Interest

M.V. Boekschoten is a project leader at T1 Food & Nutrition. C. Doler is a Ph.D. student at Technical University of Graz. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Conception and design: H. Ehedego, C. Trautwein

Developmental methodology: W. Hu, C. Liedtke

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): H. Ehedego, M.V. Boekschoten, J. Haybaec, N. Gajler, M. Müller, C. Trautwein

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): H. Ehedego, M.V. Boekschoten, C. Doler, J. Haybaec, M. Müller, C. Liedtke, C. Trautwein

Writing, review, and/or revision of the manuscript: H. Ehedego, M.V. Boekschoten, J. Haybaec, M. Müller, C. Liedtke, C. Trautwein

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): M.V. Boekschoten, N. Gajler, C. Liedtke

Study supervision: N. Gajler, C. Trautwein

Acknowledgments

The authors thank Bettina Jansen for technical assistance.
Grant Support

This work was supported by a grant of the German Cancer Foundation (Deutsche Krebshilfe) Grant Nr. 107682 and the Interdisciplinary Centre for Clinical Research (IZKF Aachen) within the Faculty of Medicine, RWTH Aachen.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked

advertisment in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 5, 2014; revised December 2, 2014; accepted December 13, 2014; published OnlineFirst January 21, 2015.

References

p21 Ablation in Liver Enhances DNA Damage, Cholestasis, and Carcinogenesis

Haksier Ehedego, Mark V. Boekschoten, Wei Hu, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-14-1356

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2015/01/22/0008-5472.CAN-14-1356.DC1

Cited articles
This article cites 36 articles, 12 of which you can access for free at:
http://cancerres.aacrjournals.org/content/75/6/1144.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.