Cancer Stem Cells: Targeting the Roots of Cancer, Seeds of Metastasis, and Sources of Therapy Resistance

Valery Adorno-Cruz1, Golam Kibria1, Xia Liu1, Mary Doherty1, Damian J. Junk1, Dongyin Guan2, Chris Hubert3, Monica Venere4, Erin Mulkearns-Hubert5, Maksim Sinyuk5, Alvaro Alvarado5, Arnold I. Caplan6,7, Jeremy Rich3,7,8, Stanton L. Gerson7,8,9, Justin Lathia5,7,8, and Huiping Liu1,7,8.

Abstract

With the goal to remove the roots of cancer, eliminate metastatic seeds, and overcome therapy resistance, the 2014 inaugural International Cancer Stem Cell (CSC) Conference at Cleveland, OH, convened together over 320 investigators, including 55 invited world-class speakers, 25 short oral presenters, and 100 poster presenters, to gain an in-depth understanding of CSCs and explore therapeutic opportunities targeting CSCs. The meeting enabled intriguing discussions on several topics including: genetics and epigenetics; cancer origin and evolution; microenvironment and exosomes; metabolism and inflammation; metastasis and therapy resistance; single cell and heterogeneity; plasticity and reprogramming; as well as other new concepts. Reports of clinical trials targeting CSCs emphasized the urgent need for strategically designing combinational CSC-targeting therapies against cancer. Cancer Res; 75(6); 924–9. ©2015 AACR.

Cancer Stem Cell Overview

As early as 1937, Furth and Kahn successfully transplanted leukemia with a single mouse leukemic cell (1), showing the first evidence of stem cell-like cancer cells, now termed cancer stem cells (CSC) or tumor-initiating cells (TIC). Dr. John Dick’s group transplanted and identified human leukemic stem cells (LSC) in the 1990s (2, 3). The continued cornerstones of identifying CSCs in human solid tumors, breast (4) and brain (5), led to the emerging field of cancer stem cell research with new prospects to understand and the hope of eliminating cancer (6, 7).

At the opening session, Dr. Jeremy Rich (Cleveland Clinic, Cleveland, OH) introduced the concept of tumor heterogeneity and presented the evolution of the CSC model as being driven by key regulatory factors such as genetic diversity, epigenetics, pathways, and tumor microenvironment (8). He explained the required functional characteristics of CSCs—self-renewal, proliferation, and tumor initiation/propagation, as well as the common, but not defining, characteristics of CSCs such as rarity, stem cell markers, and differentiation. In this meeting, scientists explored CSCs in many tumor types including brain tumors, epithelial cancers, and leukemia.

As a keynote speaker, Dr. Irving Weissman (Stanford University, Stanford, CA) emphasized that the exclusive characteristic of stem cells and CSCs is self-renewal (9). His group reported preleukemic mutations in the otherwise normal hematopoietic stem cells (10), and identified CD47 as an important CSC marker of immune evasion from macrophage-mediated phagocytosis (11) as well as a therapeutic target in human primary acute myeloid leukemia (AML) and breast cancer xenografts. Dr. Michael Clarke (Stanford University, Stanford, CA), also a keynote speaker, presented his work on the genetic regulations of stem cells and cancer stem cells. He showed that regulation can be determined by two properties, sufficient self-renewal promoters such as Bmi1, and lack of drivers of differentiation, apoptosis, and senescence. He demonstrated that USP16 inhibits self-renewal with Cdkn2a activation, thereby causing a stem cell defect in neural stem cell (NSC) as well as mammary epithelial stem cells in Down syndrome (12).

Genetics, Epigenetics, and RNA Regulators of CSCs

Genetics and epigenetics are two major regulatory mechanisms underlying the diversity and heterogeneity of CSCs. Lineage tracing has been commonly used in stem cell and CSC studies.

1Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio. 2Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio. 3Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio. 4Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio. 5Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio. 6Department of Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio. 7National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio. 8Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio. 9Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio.

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

V. Adorno-Cruz and G. Kibria contributed equally to this article.

The 2014 inaugural International Cancer Stem Cell (CSC) Conference was held from August 17 to 20, 2014, in Cleveland, OH. A complete list of speakers and their presentation titles is provided in Supplementary Table S1.

Corresponding Author: Huiping Liu, Case Western Reserve University, 2103 Connell Rd, WBB 2-154, Cleveland, OH 44106. Phone: 216-368-1047; Fax: 216-368-1166; E-mail: hliu@case.edu.

doi: 10.1158/0008-5472.CAN-14-3225

©2015 American Association for Cancer Research.
to explore the cell of origins. Dr. Luis Parada (University of Texas Southwestern Medical Center, Dallas, TX) reported on his work that focuses on the early genetic events and cell of origin of mouse gliomas, and demonstrated that a subset of endogenous quiescent glioma stem cells (GSC) was able to propagate the tumor after chemotherapy by lineage tracing (13). Dr. Michael M. Shen (Columbia University Medical Center, New York, NY) showed that luminal cells are favored as the cell of origin for mouse prostate cancer by lineage tracing (14). Dr. Helen Salz (Case Western Reserve University, Cleveland, OH) presented her work describing the tumor-suppressing role of the female-specific RNA-binding protein SXL and the oncogenic role of testis-specific chromatin reader Phf7 in Drosophila ovary stem cells (15). Dr. In lenskaya (University of Illinois at Chicago, Chicago, IL) demonstrated that ferritin is a target, and found that luminal cells are favored as the cell of origin for mouse prostate cancer by lineage tracing (14). Dr. Helen Salz (Case Western Reserve University, Cleveland, OH) presented her work describing the tumor-suppressing role of the female-specific RNA-binding protein SXL and the oncogenic role of testis-specific chromatin reader Phf7 in Drosophila ovary stem cells (15). Dr. Zhenghe John Wang (Case Western Reserve University, Cleveland, OH) reported that the loss of the tumor suppressor tyrosine phosphatase PTPRT in intestinal stem cells makes these cells more proliferative through activating STAT3 (pV705; ref. 16). In glioblastoma multiforme (GBM), Dr. Antonio Iavarone (Columbia University, New York, NY) identified novel oncogenic tyrosine kinase fusion proteins (FGFR-TACC3) as genetic drivers and targets of CSCs (17), in addition to the epigenetic regulation by transcriptional factors such as STAT3 and C/EBPβ. In short talks, Dr. Jennifer Yu (Cleveland Clinic, Cleveland, OH) showed the semaphorin family member SEMA3C as a GSC-specific target, and Dr. Craig Horbinski (University of Kentucky, Lexington, KY) reported on the role of proapoptotic prostate apoptosis response 4 (PAR4) in GSCs (18).

Dr. Bradley Bernstein (Massachusetts General Hospital, Boston, MA) discovered a core set of neurodevelopmental transcription factors (POU1F2, SOX2, SALL2, and OLIG2) essential for CSC reprogramming and GBM propagation (19), and presented the intratumoral heterogeneity of primary GBM by single cell RNA-seq with one tumor showing an immune cell expression signature (20). Dr. Catriona Jamieson (University of California, Moores Cancer Center, San Diego) presented that in replating and in humanized mouse model assays, RNA recoding by adenosine deaminases acting on dsRNA (ADAR1) is essential for blast crisis chronic myeloid leukemia stem cells to be maintained (21).

Dr. Michael Taylor (University of Toronto, Toronto, ON) discussed the CpG island methylator phenotype (CIMP) in the posterior fossa (PF) ependymoma, the only recurrent cancere with no known recurrent mutations but with silenced genes controlled by the polycomb-related complex 2 (22). Dr. Jeongyu Lee (Cleveland Clinic, Cleveland, OH) reported that noncanonical signaling by EZH2 in regulating methylation of STAT3 was required for glioblastoma stem cell maintenance (23). Dr. Elizaveta Benevolenskaya (University of Illinois at Chicago, Chicago, IL) demonstrated that the targets of H3K4 demethylase KDM5A were significantly elevated and the targets of H3K27 methyltransferase EZH2 were significantly decreased in the basal subtype of breast cancer. These results suggest that targeting the aberrant epigenetic landscape of aggressive tumors may be an effective treatment strategy.

Microenvironment, Metabolism, Inflammation, and New Concepts

Dr. Jeremy Rich suggested that CSCs are products of their environments in which conventional therapies (chemotherapy and radiotherapy) stimulate cancer-associated fibroblasts (24) to secrete cytokines (TGFβ, IL6, IL17A) and promote stemness of brain CSCs. Dr. Arnold Caplan (Case Western Reserve University, Cleveland, OH) presented his work demonstrating that mesenchymal stem cells (MSC) originate in situ as perivascular cells called pericytes (25). The pericyte serves as gate-keepers for metastasizing tumor cells like those from melanoma. The CD146 antigen on both the pericyte and the melanoma plays a crucial role in bringing the MSCs into the developing tumor to assist in tumor expansion (26). Dr. Justin Lathia (Cleveland Clinic, Cleveland, OH) discussed that the interaction of CSCs with immune cells results in immune suppression and tumor progression in GBM.

Dr. Jan Lötvall (University of Gothenburg, Gothenburg, Sweden) reported on an emerging mechanism of microenvironmental cross-talk conducted via exosomes (40–100 nm in diameter), which are secreted by various cell types and play roles in epithelial-to-mesenchymal transition (EMT), tumor hypoxia, cancer invasiveness, metastasis, angiogenesis, and tolerance to chemotherapy (27).

Metabolites and inflammatory cells/cytokines are part of the environmental regulation of CSCs. Featured speaker Dr. Celeste Simon (University of Pennsylvania, Philadelphia, PA) reported that depletion of fructose-1,6-bisphosphatase promotes clear cell renal cell carcinoma growth, regulates carbon metabolism, and inhibits hypoxia-inducible factors (HIF1α, HIF2α; ref. 28), in accordance with miR-218 to inhibit HIF2α in GBM (29). Dr. Rolf Bjerkvig (University of Bergen, Bergen, Norway) presented an innovative GBM model system of biopsy spheroids, which can be implanted in a nude rat brain, and reported on the cellular plasticity of the CD133+ cells as well as the metabolomics adaptability of the GBM in response to anti-VEGF treatment (30, 31).

Dr. Ofer Reizes (Cleveland Clinic, Cleveland, OH) demonstrated that leptin and leptin receptor, a JAK/STAT cytokine receptor expressed in breast CSCs (BCSC), is necessary for maintaining the NANOG+ BCSC phenotype (32). Dr. Emina Huang (Cleveland Clinic, Cleveland, OH) showed that elevated IL8 levels secreted from stromal fibroblasts cause a substantial increase in tumorigenicity induced by aldehyde dehydrogenase (ALDH)-1+ colon cancer-initiating cells within colitis-associated cancer (33).

Dr. Yue Xiong (University of North Carolina, Chapel Hill, NC) reported two regulatory mechanisms of the Tet DNA dioxygenases, by metabolites and by ubiquitylation. These mechanisms eventually influence DNA methylation and epigenetic modifications of embryonic stem cells and CSCs (34). Dr. Alex Huang (Case Western Reserve University, Cleveland, OH) established intravitral 2-photon microscopy to directly observe how immune cells traffic and interact with various cells in the tumor microenvironment in real time with single-cell resolution (35). In a short talk, David Schonberg's (Cleveland Clinic, Cleveland, OH) work suggested that glioblastoma stem cells require increased ferritin, and that targeting ferritin inhibits GSC tumorigenicity in vivo and in vitro. Dr. Masahiro Hitomi (Cleveland Clinic, Cleveland, OH) described a critical role for cell-cell communication in GBM CSCs and suggested a novel therapeutic option for treating GBM. Kelli Pointer (University of Wisconsin, Madison, WI) briefly discussed the role of collagen in GBM tumor invasion and patient survival.

Epithelial Tumor Stem Cells and Metastasis

Epithelial tumors are the most frequent tumor types (breast and prostate) as well as the leading cause of cancer deaths
Evolution, Heterogeneity, and Therapeutic Resistance

Dr. Stanton Gerson (Case Western Reserve University, Cleveland, OH) proposed a preleukemic stem cell (pre-LSC) model in MSH2−/− mice in which MSH2−/− pre-LSCs are able to initiate normal hematopoiesis and develop transplantable lymphohemagenesis within 5 to 7 months. Using high-content single cell analysis with single cell genomics, Dr. Peter Kuhn (University of Southern California, Los Angeles, CA) presented the mathematical modeling for a spatiotemporal understanding of cancer progression, as well as an experimental mapping of disease response in patients (50). Dr. Dean Tang (University of Texas MD Anderson Cancer Center, Houston, TX) demonstrated that a population of phenotypically undifferentiated prostate cancer cells (low or negative for prostate-specific antigen and androgen receptor) is highly resistant to castration and other clinical therapies, and may also represent a cell-of-origin for castration-resistant prostate cancer (51).

Using the lineage mapping of NSC clones in glioblastoma-prone mouse brains in their premalignant state, Dr. Evan Snyder's (Sanford-Burnham Medical Research Institute, and University of California-San Diego, La Jolla, CA) work suggested that many different cells, under the right conditions, can give rise to a neoplasm, and that the "fate choice" of a given member of a stem cell clone to become a normal brain constituent or a GBM cell may pivot on a developmentally inappropriate neurogenic-to-gliogenic switch compounded by cell nonautonomous factors (and not solely on genetic predisposing factors). Subsequently, Dr. Claudia Petritsch (University of California, San Francisco, CA) described the presence of asymmetry-defective cells with oligodendrocyte progenitor cell characteristics in malignant astrocytomas modeled by BrafV600E expression and Gcml2a deletion (52). Dr. Tannishtha Reya (University of California, San Diego, CA) suggested that regulators of asymmetric division can be effective targets for tumor resolution (53). Using fluorescence-guided multiple sampling, Dr. Colin Watts (University of Cambridge, Cambridge, England) demonstrated the clonal evolutionary dynamics of glioblastomas in patients having multiple GBM subtypes (54, 55).

Dr. Ichiro Nakano (Ohio State University and Columbus, OH) found that radiosensitive proneural glioma with differentiation capacity is converted by radiation to mesenchymal glioma, which is resistant to radiation with elevated ALDH1 (ALDH1-A3 in particular) activity in GSCs and a worse prognosis (56). Dr. Jacob Scott (H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL) presented a mathematical model of rapid selective evolutionary dynamics in hypoxic GSC niches (57). With identification of four factors (CD15, Notch, CD90, and EGRF) that can distinguish NSCs from neural progenitor cells (NPC), Dr. Siddhartha Mitra (Stanford University, Stanford, CA) demonstrated that NPCNs were more likely to form gliomas than NSCs in vivo. And, in the final talk of this session, Dr. Yu Shi (Southwest Hospital of Third Military Medical University, Chongqing, China) described the tumor-suppressing role of mir-663 in glioblastoma, which is down-regulated along with increased glioma grade (58).

Dual Role Enigmas of CSC Regulators in Tumor Progression

Dr. Bingcheng Wang (Case Western Reserve University, Cleveland, OH) reported the dual roles of EphA2 as both a...
ligand-dependent tyrosine kinase tumor suppressor protein and a ligand-independent promoter of CSCs in response to AKT activation (59). Dr. William Schieman (Case Western Reserve University, Cleveland, OH) introduced an EGFR-assisted TGFβ-driven EMT model (NMuMG cells) and suggested that both EMT and MET phenotypes contribute to metastasis. Dr. Jianjun Chen (University of Chicago, Chicago, IL) reported a dual role of miR-126 in the development and progression of AML (60) to either promote or inhibit AML1-ETO/ETO8-mediated leukemogenesis with different gene signatures.

In a short talk, Dr. Géraldine J. Guasch (Cincinnati Children’s Hospital Medical Center, Cincinnati, OH) suggested that transition zones are associated with tumor formation in humans upon loss of TGFβ signaling. Jacob Smigiel (Case Western Reserve University, Cleveland, OH) reported a role of GREM-1 as inhibiting EMT and the cytokine Oncostatin M-induced breast CSC transition. However, GREM-1 may show different effects in brain tumor cells as discussed by Drs. Lathia and Rich.

Clinical Trials of CSC Targeting Therapeutics

In addition to Dr. Irving Weissman’s ongoing anti-CD47 trials, this meeting witnessed the growth of emerging clinical trials that target CSCs. Dr. David Walld (Case Western Reserve University, Cleveland, OH) induced differentiation of AML stem cells by using the GSK3 inhibitor lithium in synergy with all-trans-retinoic acid (ATRA) now in a phase I clinical trial (61). Dr. Yogen Saunthararajah (Cleveland Clinic, Cleveland, OH) reported on his exploration of a novel epigenetic regulation approach using a DNMT1 inhibitor decitabine in a nontoxic dosing scheme to induce differentiation with cytogenetic remissions in AML patients, reporting 84% responding with stable disease (62), without affecting normal hematopoietic stem cells (63). Dr. Kenneth Nephew (Indiana University, Bloomington, IN) also investigated the effects of a new DNMT inhibitor, SGI-110, in eliminating ovarian cancer stem cells that are enriched in residual, platinum-resistant tumors (64).

Dr. Austin Gurney (OncoMed Pharmaceuticals, Redwood City, CA) targeted the stem cell pathways of Notch, Wnt, and BSOPO in cancer treatment using Demcizumab (anti-Notch ligand DLI4 antibody), OMP-52M51 (anti-Notch1), and OMP-18R5 (anti-Wnt receptor FZD monoclonal antibody) in combination with chemotherapeutic agents on cancers of pancreas, lung, breast, and colon (65). Dr. Sanford Markowitz (Case Western Reserve University, Cleveland, OH) identified the TGFβ-regulated metabolic tumor suppressor 15-prostaglandin dehydrogenase (15-PGDH) pathway in colon tumorigenesis and discussed its clinical translation. Dr. Lyndsay Harris (Case Western Reserve University, Cleveland, OH) concluded that a potent selective inhibitor of GREM-1 may show different effects in brain tumor cells.

Conclusions

The research presented in this conference demonstrated an increasing contribution from the expanding CSC field to a better understanding of cancer biology, and showed a growing demand for bench-to-bedside translations. In addition to scientific sessions, a grant and career development workshop with six panelists (Dr. Huiping Liu, Dr. Suresh Mohla of NIH/NCI, Dr. Angela Ng of NIH/CSR, Dr. Ming Lei of NIH/NCI, Dr. Justin Lathia, and Dr. Jill Barnholtz-Sloan of Case Western Reserve University) was offered to inspire young generations. Dr. Stanton Gerson suggested creating an International Society of Cancer Stem Cells by the second CSC meeting in 2016.

Disclosure of Potential Conflicts of Interest

A.I. Caplan has provided expert testimony for CNRUI royalties shared from Osiris Therapeutics. J. Rich is a consultant/advisory board member for Curtana Pharmaceuticals. No potential conflicts of interest were disclosed by the other authors.

Acknowledgments

The authors thank Michael Gilkey, Lynn Haselton, Gillian Todd, Cynthia Rahn, the conference directors, and the vendors who supported the conference, and Cynthia Rahn for editing the manuscript.

Grant Support

The symposium was organized by the National Center of Regenerative Medicine and Case Comprehensive Cancer Center (National Cancer Institute P30 CA043703 Support Grant), and partially sponsored by Case Western Reserve University School of Medicine, Cleveland Clinic, and University Hospitals Case Medical Center.

Received October 31, 2014; revised December 17, 2014; accepted January 11, 2015; published online First January 20, 2015.
25. Caplan AI. All MSCs are pericytes? Cell Stem Cell 2008;3:229
21. Jiang Q, Crews LA, Barrett CL, Chun HJ, Court AC, Isquith JM, et al. ADAR1
15. Salz HK. Sex, stem cells and tumors in the Drosophila ovary. Fly 2013;7:
13. Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics,
14. Wang ZA, Toivanen R, Bergren SK, Chambon P, Shen MM. Luminal cells are
5. Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics,
4. Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics,
3. Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics,
2. Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics,

Cancer Stem Cells: Targeting the Roots of Cancer, Seeds of Metastasis, and Sources of Therapy Resistance

Valery Adorno-Cruz, Golam Kibria, Xia Liu, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-14-3225

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2015/01/20/0008-5472.CAN-14-3225.DC1

Cited articles
This article cites 63 articles, 20 of which you can access for free at:
http://cancerres.aacrjournals.org/content/75/6/924.full#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/75/6/924.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.