BH3 Inhibitor Sensitivity and Bcl-2 Dependence in Primary Acute Lymphoblastic Leukemia Cells

Sarah E. Alford1, Anisha Kothari1, Floris C. Loeff2, Joshua M. Eichhorn3, Nandini Sakurikar1, Henriette M. Goselink2, Robert L. Saylors3, Inge Jedema2, J.H. Frederik Falkenburg2, and Timothy C. Chambers1

Abstract

BH3 mimetic drugs may be useful to treat acute lymphoblastic leukemia (ALL) but the sensitivity of primary tumor cells has not been fully evaluated. Here, B-lineage ALL cell cultures derived from a set of primary tumors were studied with respect to sensitivity to the BH3 mimetics ABT-263 and ABT-199 and to Bcl-2 dependence and function. These ALL cells each expressed high levels of Bcl-2 and exhibited great sensitivity to ABT-263 and ABT-199, which induced rapid apoptotic cell death. BH3 profiling indicated that the ALL cultures were Bcl-2 dependent. Coimmunoprecipitation studies revealed a multifaceted role for Bcl-2 in binding proapoptotic partners including Bax, Bak, Bik, and Bim. ABT-263 disrupted Bcl-2:Bim interaction in cells. Mcl-1 overexpression rendered ALL cells resistant to ABT-263 and ABT-199, with Mcl-1 assuming the role of Bcl-2 in binding Bim. Freshly isolated pediatric ALL blasts also expressed high levels of Bcl-2 and exhibited high sensitivity to Bcl-2 inhibition by the BH3 mimetic compounds. Overall, our results showed that primary ALL cultures were both more sensitive to BH3 mimetics and more uniform in their response than established ALL cell lines that have been evaluated previously. Furthermore, the primary cell model characterized here offers a powerful system for preclinical testing of novel drugs and drug combinations to treat ALL.

Cancer Res; 75(7); 1366–75. ©2015 AACR.

Introduction

Bcl-2 family proteins function as key regulators of intrinsic apoptosis (reviewed in refs. 1–5). They are divided into three main classes: multidomain antiapoptotic (or prosurvival) proteins, which include Bcl-2, Bcl-xL, Mcl-1, and others; multidomain proapoptotic proteins, including Bax and Bak; and BH3-only proapoptotic proteins. The BH3-only proteins are divided further into activators (Bid and Bim), which can directly bind and activate Bax and Bak, and sensitizers (Bad, Bik, Hrk, Bmf, Noxa, and Puma), which bind antiapoptotic Bcl-2 proteins and prevent them from sequestering proapoptotic Bcl-2 proteins. Upon activation, Bax and Bak form pores in the mitochondrial membrane for the release of apoptogenic factors such as cytochrome c.

To survive in the face of abnormalities such as oncogene activation or genomic instability that would normally trigger cell death, cancer cells must acquire multiple antiapoptotic mechanisms (6). Many of the selective blocks in apoptotic signaling in cancer cells involve Bcl-2 family proteins, including overexpression of antiapoptotic members and/or defects in the activation or expression of proapoptotic members (7). Indeed, Bcl-2 itself was first recognized as a dysregulated and overexpressed gene that plays a key role in promoting survival of follicular lymphoma cells (8).

Importantly, dysregulation of death signaling not only promotes tumorigenesis but also confers resistance to anticancer drugs (9). It is well established that overexpression of prosurvival Bcl-2 proteins such as Bcl-2, Bcl-xL, or Mcl-1 blocks cell death induced by anticancer drugs, resulting in chemoresistance (5, 7). On the basis of such observations, BH3 mimetics have been developed to target and disable prosurvival Bcl-2 proteins, as a means to overcome the mechanisms of apoptosis resistance and tilt the balance in favor of cell death. ABT-737, and the orally bioavailable derivative ABT-263, are mimetics based on the proapoptotic BH3-only protein Bad, which selectively target Bcl-2, Bcl-xL, and Bcl-w, but do not inhibit Mcl-1 (10–16). ABT-263 has demonstrated in vitro activity in a wide range of cancer cell lines, primary leukemia cells, and xenograft models (10–17). In addition, phase I and II clinical trials conducted for several types of cancer have shown promising results (13, 14, 18–20). Because a limitation of ABT-263 is thrombocytopenia due to Bcl-xL inhibition in circulating platelets, the derivative ABT-199 was recently developed, which is selective for Bcl-2 and exhibits antitumor activity without significant thrombocytopenia (21).

Acute lymphoblastic leukemia (ALL) affects both adults and children (22, 23). Because cure rates have begun to plateau, new
classes of therapeutic agents are needed, but these are difficult to evaluate systematically in patients especially in the context of polychemotherapy. Many continuously proliferating ALL cell lines have been established (24, 25), but after extensive propagation they have likely acquired properties that deviate from the originating primary cells. This emphasizes the need for preclinical cell models of ALL that more closely represent the disease. Recently, conditions were established for the expansion and long-term culture of primary adult ALL cells using a defined media that lacked serum and hematopoietic growth factors (26). This system provides a unique and powerful tool for the preclinical evaluation of novel therapies for ALL. In the current study, we examined ABT-263 and ABT-199 sensitivity, and Bcl-2 dependence and function, in several of these ALL cultures as well as in freshly isolated pediatric ALL blasts. These results demonstrate the utility of these expanded primary cultures for preclinical studies of ALL, provide mechanistic insight into the determinants of sensitivity and resistance to BH3 mimetics, and have important implications for the optimal use of these compounds in adult and pediatric ALL.

Materials and Methods

Cell culture
KB3 cells (HeLa subline) were maintained in DMEM, and RS4;11 and NALM-6 cell lines were maintained in RPMI1640 medium, supplemented with 10% bovine growth serum, 2 mM/L l-glutamine, 50 U/mL penicillin, and 50 μg/mL streptomycin. ALL cell cultures were maintained in suspension as described (26) in Iscove Modified Dulbecco’s Medium (iDMEM) containing serum-free supplement (10 μg/mL cholesterol, 6 μg/mL human serum albumin, 0.5 μg/mL amphotericin, 1 μg/mL insulin, 200 μg/mL human apo-transferin, 50 μM/L 2-mercaptoethanol, 2 mM/L glutamine, and 50 μg/mL gentamycin). McI-1-dependent and Bcl-2-dependent leukemia cell lines were described previously (27). Cells were maintained at 37°C and 5% CO2. Authentication of the cell lines and ALL cultures was established via short tandem repeat (STR) profiling in September 2014 by Genetica DNA Laboratories (LabCorp Speciality Testing Group). The STR profile of each cell line matched that of reference profiles available in the ATCC database. The primary ALL cell culture profiles did not match any repository cell lines, as expected, and each profile was unique with respect to the others.

Cell viability assay
Cell viability was determined using MTT as described (28). Cells (30,000 per well) were seeded in 96-well plates, and either ABT-263 or ABT-199 was added in a fixed final concentration of 0.1% DMSO. After 72 hours, MTT reagent (50 μg/10 μL/well) was added and incubated overnight at 37°C. The following day, 0.1 mL of 10% SDS in 0.01 mol/L HCl was added, and after overnight incubation, absorbance readings were taken at 540 nm.

BH3 profiling
Whole cell (IC-1) BH3 profiling was performed as described previously (29, 30). Briefly, cells were harvested, washed, and resuspended in Newmeyer buffer (0.3 mol/L trehalose, 10 mmol/L HEPES-KOH pH 7.7, 80 mmol/L KCl, 1 mmol/L EGTA, 1 mmol/L EDTA, 0.1% RSA, and 5 mmol/L sucrose). An equal volume of l-decametaphosphat (4 μmol/L IC-1, 0.2% digitonin, 40 μg/mL oligomycin, 20 mmol/L β-mercaptoethanol in Newmeyer buffer) was then added and after 10 minutes in the dark, aliquots of 30 μL were added to the wells of a black, clear bottom 96-well plate containing 30 μL of 20 μg/mL peptide in Newmeyer buffer. The peptides corresponded to the BH3 domain of different proapoptotic Bcl-2 proteins as follows: Bim, MRPEIWAQELRIGEDEFN; Bid, EDIIRRNIARHQLQVGDSMYR; Bad, LWAAQRYGRELRRFYHRE; and Hrk, WSSAQQGTHKTQLGDELFYHQ. Fluorescence was measured at an excitation wavelength of 530 nm and an emission wavelength of 590 nm every 5 minutes for 2 hours. Readings were normalized against that obtained with 10 μmol/L carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) as a positive control for mitochondrial membrane depolarization. Each condition was conducted in triplicate.

Retroviral transduction
Retroviral transduction to stably overexpress Mcl-1 in primary ALL cells was performed as described previously (31). Briefly, human Mcl-1 in pcDNA3.1 vector was cloned into the bicistronic LZRS vector containing a multiple cloning site followed by an Internal Ribosome Entry Site coupled to a truncated form of the nerve growth factor receptor (NGFR) as a marker gene. The constructs were transfected into the ψ-NX-A retroviral packaging cell line using Fugene HD reagent, and positive cells selected in medium containing 2 μg/mL puromycin. After 24 hours in puromycin-free medium, the supernatant was collected.

Table 1. Sensitivity of RS4;11 and NALM-6 cell lines and primary ALL cells to ABT-263 and ABT-199

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>IC50 ABT-263 (μmol/L)</th>
<th>IC50 ABT-199 (μmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS4;11</td>
<td>223.5 ± 19.7</td>
<td>40.2 ± 9.8</td>
</tr>
<tr>
<td>NALM-6</td>
<td>839 ± 11</td>
<td>>5000</td>
</tr>
<tr>
<td>ALL-19</td>
<td>1.92 ± 0.12</td>
<td>4.02 ± 0.44</td>
</tr>
<tr>
<td>ALL-2</td>
<td>3.24 ± 0.15</td>
<td>9.69 ± 1.45</td>
</tr>
<tr>
<td>ALL-5</td>
<td>4.25 ± 0.20</td>
<td>2.87 ± 0.38</td>
</tr>
<tr>
<td>ALL-14</td>
<td>5.33 ± 0.71</td>
<td>6.76 ± 0.51</td>
</tr>
<tr>
<td>ALL-3</td>
<td>5.94 ± 0.32</td>
<td>22.1 ± 4.7</td>
</tr>
<tr>
<td>ALL-12</td>
<td>5.95 ± 0.38</td>
<td>6.15 ± 1.07</td>
</tr>
<tr>
<td>ALL-6</td>
<td>3.27 ± 0.23</td>
<td>3.11 ± 0.23</td>
</tr>
</tbody>
</table>

NOTE: Values shown are mean ± SD and are derived from data in Supplementary Figs. S1 and S2.
centrifuged to remove cell debris, aliquoted, and quick frozen. For transduction, 0.5 ml of supernatant was added to the wells of a 24-well plate coated with human fibronectin fragments (CH-296, Retronectin, Takara Biotec). Plates were centrifuged at 3,000 × g for 20 minutes, supernatant was removed, and 1.5 × 10^5 ALL cells were added per well. After 24 hours, cells were removed and expanded for 4 weeks in medium containing serum-free supplement. Transduced cells were purified by magnetic-activated cell sorting using anti-hNGFR-APC clone ME20.4 and anti-APC MicroBeads using a LS-column in combination with a QuadroMACS separator (Miltenyi Biotec), and Mcl-1 overexpression confirmed by flow cytometry for anti-hNGFR immunoreactivity and by Mcl-1 immunoblot.

Isolation of pediatric ALL blasts

Samples of marrow (10 ml) were obtained from pediatric ALL patients under a protocol approved by the UIAM Institutions Review Board. Twenty-five milliliters of IMDM containing 2% FBS, 1% penicillin/streptomycin, 2 mmol/L l-glutamine, and 25 mmol/L Hepes, pH 7.2, was added, and the mixture was pipetted onto 12 ml of Ficoll-Paque PLUS (1.078 g/ml), which was centrifuged at 1,000 × g for 22 minutes. The cloudy layer of mononuclear cells containing the blasts was collected, two volumes of IMDM media added, and the solution centrifuged at 500 × g for 10 minutes. The cell pellet was suspended in growth media (IMDM with serum-free supplement), aliquots were frozen and stored, and the remainder cultured for experiments the next day. This procedure yielded highly purified ALL blast preparations, comprising 98% to 100% of the cells visualized by Giemsa staining and light microscopy.

Results

Primary ALL cells express high levels of Bcl-2

We initially selected seven primary adult ALL cell cultures from a total of 12 available samples, for which long-term proliferation had been established (26). These were derived from patients 19, 2, 5, 14, 3, 12, and 6 (26). KB3, a HeLa subline, and RS4;11, a human B-cell ALL cell line, were used as comparative controls. The relative expression level of the three major prosurvival Bcl-2 proteins, Bcl-2, Bcl-xL, and Mcl-1, was first examined by immunoblotting (Fig. 1). RS4;11 cells and all of the primary ALL cell cultures expressed high levels of Bcl-2 relative to KB3 cells, with quantitation of band intensity indicating levels 150- to 200-fold greater, with the exception of ALL-2, which was about 30-fold greater. In contrast and despite some variation, the ALL cells expressed levels of Bcl-xL more similar to, and levels of Mcl-1 lower than KB3 cells.

Primary ALL cells are acutely sensitive to the Bcl-2 inhibitors ABT-263 and ABT-199

Cell viability assays were conducted after 3-day exposure of cells to the Bcl-2/Bcl-xL inhibitor ABT-263 (Supplementary Fig. S1; ref. 10). KB3 cells were refractory to the effects of ABT-263, consistent with their strict dependence on Mcl-1 for survival (Supplementary Fig. S1; ref. 28). RS4;11 cells exhibited an IC50 value of 223 nmol/L while an additional B-ALL cell line, NALM-6, were relatively more resistant with an IC50 value of 839 nmol/L (Supplementary Fig. S1; Table 1). Strikingly, the primary ALL cell cultures were uniformly highly sensitive to ABT-263, with IC50 values ranging from 2 to 6 nmol/L (Supplementary Fig. S1; Table 1). We next tested ABT-199, which is more selective for inhibition of Bcl-2 than Bcl-xL (21). KB3 cells were unaffected, RS4;11 cells were sensitive, and NALM-6 were relatively resistant (Supplementary Fig. S2; Table 1). As with ABT-263, the primary ALL cell cultures were highly sensitive to ABT-199, with IC50 values ranging from 3–22 nmol/L (Supplementary Fig. S2; Table 1).

Supersensitivity of Primary ALL Cells to BH3 Mimetics

Bcl-2 inhibition leads to rapid apoptotic death of ALL cells

To examine the kinetics of cell death, ALL cells were treated with lethal concentrations of ABT-263 or ABT-199 based on the cell survival curves (30 nmol/L for primary ALL and 1 μmol/L for RS4;11 cells) for periods up to 24 hours, and cell extracts subjected to immunoblotting for PARP, which is cleaved into characteristic products upon apoptotic cell death. ABT-263 failed to induce PARP cleavage in KB3 cells as expected, induced complete PARP cleavage within 8 hours in RS4;11 cells, and also induced rapid PARP cleavage in the primary ALL cultures (Supplementary Fig. S3A). Similarly, lethal concentrations of ABT-199 induced rapid PARP cleavage in RS4;11 cells and in many of the primary ALL cultures (Supplementary Fig. S3B). For ALL-2, ABT-199 induced loss of expression of the 116 kDa form of intact PARP without evidence of the 85 kDa fragment being present, and for ALL-5, PARP cleavage was largely incomplete. Similar results for ALL-2 and ALL-5 were obtained at a higher ABT-199 concentration of 300 nmol/L (data not shown). To complement these results and confirm apoptotic death in response to the BH3 mimetics, especially in the ALL cell cultures that displayed anomalies in PARP cleavage, caspase-3 assays were performed (Supplementary Fig. S3C). Both ABT-263 and ABT-199 caused rapid caspase-3 activation in the RS4;11 cell line and in all of the primary ALL cultures, but failed to activate caspase-3 in KB3 cells.

Primary ALL cells are dependent on Bcl-2

To determine whether the primary ALL were dependent on Bcl-2, BH3 profiling was employed (29, 30). Peptides derived from a panel of BH3-only proteins are added to permeabilized cells, and the pattern of peptides that causes loss of mitochondrial outer membrane potential identifies which antiapoptotic protein is responsible for maintaining survival. Loss of mitochondrial membrane potential is measured by the decay of fluorescence of JC-1, with FCCP, a protonophore that depolarizes mitochondrial membranes, as a positive control. Two leukemia cell lines derived from transgenic mice, dependent on either Mcl-1 or Bcl-2 (27), were used as controls. With the Mcl-1–dependent cell line, loss of mitochondrial membrane potential occurred with peptides...
corresponding to the BH3 domains of Bim, Bid, Puma, Bmf, and Noxa, whereas peptides from Bad and Hrk were less effective (Fig. 2). This corresponds to the known binding profile of Mcl-1, which has poor affinity for Bad and Hrk, and to previously published BH3 profiling data for this cell line (27, 29, 30). With the Bcl-2–dependent cell line, loss of mitochondrial membrane potential occurred with peptides from the BH3 domains of Bim, Bid, Puma, Bmf, and Bad, whereas those from Noxa and Hrk were ineffective (Fig. 2). This corresponds to the known binding profile of Bcl-2, which has poor affinity for Noxa and Hrk, and to previously published BH3 profiling data for this cell line (27, 29, 30). RS4;11 cells and all of the ALL cell cultures clearly showed the Bcl-2–dependent profile (Fig. 2), indicating their Bcl-2 dependence and consistent with their high level of sensitivity to ABT-199.

Bcl-2 sequesters several proapoptotic Bcl-2 family members

We next sought to identify by coimmunoprecipitation which proapoptotic Bcl-2 family proteins were bound to Bcl-2. RS4;11 cells and the primary ALL cultures expressed, with varying relative levels, several proapoptotic Bcl-2 family members, including Bak, Bax, Bid, Bim, and Bik (see lane 1 in Figs. 3A and 4A). Bcl-2 was first immunoprecipitated from RS4;11 cells (Fig. 3A) and efficient immunoprecipitation was demonstrated as Bcl-2 appeared mainly in the pellet (lane 5) and was depleted from the supernatant (lane 3), whereas in a mock immunoprecipitation performed in the absence of antibody, the protein remained in the supernatant (lane 2) and was absent from the pellet (lane 4). Immunoblotting for proapoptotic Bcl-2 proteins in the precipitated material showed bands that appeared to correspond to Bak, Bax, several forms of Bim (Bim-EL, Bim-L, and Bim-S), and Bik, although Bid, despite being present in the extract, was not detected (Fig. 3A). Identification of Bak, however, was complicated by the presence of two bands, one at 23 kDa and an additional band, presumably immunoglobulin light chain (IgG-LC) at around 25 kDa, migrating with a slower mobility (Fig. 3A, lane 5). We reasoned that the binding of Bak to Bcl-2 in the immunoprecipitate might be disrupted under mild detergent conditions such as 1% Triton X-100, whereas IgG-LC and Bcl-2 may remain more firmly bound to the Protein A/G beads under such conditions. To test this, Bcl-2 was immunoprecipitated from RS4;11 cells, and the washed beads incubated in buffer containing 1% Triton X-100, and the detergent-solubilized eluant subjected to immunoblotting (Fig. 3A, lane 7). Bak was not detected in the detergent eluant, confirming that the band present in the immunoprecipitate (lane 5, asterisk), which ran slower than authentic Bak, was likely due to IgG-LC crossreactivity. Strong bands corresponding to the three forms of Bim as well as Bik were clearly identified in the detergent eluant, confirming them as authentic Bcl-2 partners. Reciprocal immunoprecipitations were performed for further validation, and Bcl-2 was identified in immunoprecipitates of Bim (Fig. 3B) as well as Bik (Fig. 3C) but was not detected in an immunoprecipitate of Bak (data not shown). Thus in RS4;11 cells, Bcl-2 binds several proapoptotic partners including Bak, Bim, and Bik, but does not appear to bind either Bax or Bid. To further verify the specificity of these interactions, immunoprecipitation with β-actin antibody as a negative control was performed. As shown in Supplementary Fig. S4, when β-actin was immunoprecipitated from an extract of RS4;11 cells, β-actin was detected, whereas Bak, Bax, Bcl and Bik were not detected. Interestingly, Bcl-2 was present in the β-actin immunoprecipitate, consistent with several reports suggesting these proteins interact (32, 33). Thus, Bcl-2 exists in at least two complexes, with proapoptotic Bcl-2 proteins and with β-actin.

Figure 3. Bcl-2 interacts with multiple proapoptotic Bcl-2 family proteins in RS4;11 cells. A, Bcl-2 was immunoprecipitated from RS4;11 cells and subjected to immunoblotting for Bcl-2 and the indicated proapoptotic Bcl-2 family members. WCE, whole-cell extract; sup, supernatant; IP, immunoprecipitate; eluant, detergent eluant of immunoprecipitate. Samples were obtained from immunoprecipitations performed in the absence (−) or presence (+) of Bcl-2 antibody. *, nonspecific bands. B, Bim was immunoprecipitated from RS4;11 cells and subjected to immunoblotting for Bim and Bcl-2. C, Bik was immunoprecipitated from RS4;11 cells and subjected to immunoblotting for Bik and Bcl-2.
confirmed that Bax, Bim, and Bik complexes with Bcl-2 in ALL-19 cells (Fig. 4B–D, respectively). Thus, with the exception of Bax, which complexes with Bcl-2 in the primary ALL cells but not in the RS4;11 cell line, the binding partners of Bcl-2 are similar.

ABT-263 displaces Bim from Bcl-2

The sensitivity of ALL cells to ABT-263 is likely based on the ability of the mimetic to bind directly to Bcl-2 and displace bound proapoptotic Bcl-2 proteins. We initially focused on Bim because it is a key activator BH3-only protein and found associated with Bcl-2 in ALL cells. To test the effect of ABT-263 on Bim:Bcl-2 interaction, RS4;11 cells were treated with vehicle or 1 μmol/L ABT-263 for 4 or 6 hours, and whole-cell extracts were prepared, Bcl-2 immunoprecipitated, and subjected to immunoblot analysis for both Bcl-2 and Bim. As shown in Supplementary Fig. S5, lanes 9–11, while the levels of Bcl-2 in the immunoprecipitate remained unchanged, the levels of Bim, and most notably Bim-EL, were reduced following ABT-263 treatment. These results show that ABT-263 reduces the amount of Bim associated with Bcl-2 in RS4;11 cells, consistent with the mimetic acting to directly displace Bim from Bim:Bcl-2 complexes.

Mcl-1 overexpression renders ALL cells ABT-263/199 resistant

To further establish that the primary ALL cells are sensitive to the BH3 mimetics because of their strict dependence on Bcl-2 for survival, we next determined whether Mcl-1 overexpression would reverse sensitivity. Thus, human Mcl-1 was expressed via retroviral transduction in several of the ALL primary cultures, namely ALL-2, ALL-14, and ALL-19, as described in Materials and Methods. After FACS sorting for selection of cells with relatively high Mcl-1 expression, MTT viability assays were conducted. Results obtained for ALL-2 are presented in Fig. 5. Immunoblotting confirmed overexpression of Mcl-1 in the transduced cells, while the expression level of Bcl-2 was decreased and that of Bcl-xL was relatively unchanged (Fig. 5A). Cell viability assays showed that even at the highest concentrations tested of 1 μmol/L, ABT-263 reduced viability by only 40% (Fig. 5B) and ABT-199 was essentially ineffective (Fig. 5C). Thus, in the context of Mcl-1 overexpression, IC_{50} values in ALL-2 cells were >1 μmol/L for each compound, compared with low nanomolar values in the absence of Mcl-1 overexpression. Essentially identical results were obtained with ALL-14 and ALL-19 cells, which also became highly resistant to the Bcl-2 antagonists upon Mcl-1 overexpression (data not shown). Thus, in Bcl-2–dependent ALL cells, Mcl-1 can compensate and maintain cell survival under conditions where the normal guardian, Bcl-2, is inhibited.

Mcl-1 may provide antiapoptotic function in the context of Bcl-2 inhibition due to its capacity to sequester proapoptotic Bcl-2 proteins normally bound to Bcl-2. To test this, Mcl-1 or Bcl-2 was immunoprecipitated from parental and Mcl-1 overexpressing ALL-2 cells, and immunoprecipitates probed for Bim. When Mcl-1 was immunoprecipitated from parental cells (Fig. 5D, left, lane 2), bands corresponding to Bim-L and Bim-S were not detected, whereas when Mcl-1 was immunoprecipitated from Mcl-1–overexpressing cells, Bim-L and Bim-S were clearly detected (lane 3; note that the presence of Bim-EL was obscured by nonspecific bands). Conversely, when Bcl-2 was immunoprecipitated, the amount of Bim associated with Bcl-2 was diminished in cells overexpressing Mcl-1 (Fig. 5D, right, compare lane 2 with lane 3). These results indicate that when overexpressed, Mcl-1 shares or attains Bcl-2’s responsibility in sequestering Bim.

Freshly isolated pediatric ALL blasts are highly sensitive to ABT-263

To further establish that primary ALL cells are highly sensitive to Bcl-2 inhibition, and to extend the study to include samples derived from pediatric patients, blasts were freshly isolated from two pediatric patients diagnosed with ALL. Immunoblotting
indicated that the pediatric ALL cell cultures displayed antiapoptotic Bcl-2 protein expression profiles similar to that observed for the adult ALL cultures, with high levels of Bcl-2, similar levels of Bcl-xL, and lower levels of Mcl-1, versus KB3 cells (Fig. 6A). Cell viability assays showed that both samples of the pediatric ALL blasts were highly sensitive to ABT-263, with IC_{50} values of 6.2 ± 0.3 nmol/L and 6.7 ± 0.4 nmol/L (Fig. 6B and C).

Discussion

In this study, a series of adult ALL cell cultures, derived and expanded from primary cells and representing a unique model of ALL, were tested for sensitivity to ABT-263 and ABT-199, and further characterized with respect to Bcl-2 dependence and function. The results show that the ALL cell cultures are highly sensitive to both BH3 mimetics, with IC_{50} values in the low nanomolar range. Our results are consistent with other reports that primary B-ALL and T-ALL cells are sensitive to BH3 mimetics (16, 17). In addition to this high degree of sensitivity, we observed a very narrow range of IC_{50} values for each of the two compounds, reflecting a striking consistency across all seven cultures examined.

This contrasts with established ALL cell lines that vary over a much broader range and that are typically far more resistant. For example, Jayanthan and colleagues (34) found sensitivity to ABT-737 varied over 1,000-fold, from subnanomolar to submicromolar, for five ALL cell lines with MLL rearrangement. A 20-fold difference in IC_{50} value for ABT-263 for two B-cell ALL cell lines was reported in one study (35), and in another study four ALL cell lines varied over a 100-fold range in sensitivity (17). In addition and aside from ALL, a study of 25 multiple myeloma cell lines reported IC_{50} values for ABT-263 ranged from 7 nmol/L to 150 nmol/L (36). In the current work, the B-cell ALL cell lines RS4;11 and NALM-6 were much more resistant to ABT-263 versus the most sensitive ALL culture (Table 1). Interestingly, RS4;11 cells were much more sensitive to ABT-199 than NALM-6 cells (Table 1), suggesting that NALM-6 may be more dependent on Bcl-xL than Bcl-2. Importantly, freshly isolated pediatric ALL blasts exhibited IC_{50} values for ABT-263 similar to those of the adult ALL primary cultures. The uniformity of response observed with the ALL cultures versus the large variation seen with established cell lines has two important implications. First, it supports the prevailing notion that, over time, cell lines acquire characteristics that may not reflect those of the primary cells from which they were derived. Second, this disparity indicates that primary ALL cultures are much more sensitive to BH3 mimetics, and more uniform in their response, than suggested by data generated from the study of cell lines. In turn, these findings highlight the utility of such cultures for preclinical studies of ALL, and add to the growing body of evidence validating the use of Bcl-2 inhibitors as a therapeutic strategy for this disease. Preliminary results using peripheral blood mononuclear cells from healthy donors have indicated that monocytes, T-cells and natural killer cells have IC_{50} values for ABT-263 of >1 µmol/L, and B-cells have an IC_{50} value of 80 nmol/L, suggesting that the compound exhibits selective...
Supersensitivity of Primary ALL Cells to BH3 Mimetics

cytotoxicity toward ALL cells and thus a favorable therapeutic index.

While antiapoptotic Bcl-2 proteins exhibit overlapping functions (1–5), different cell types may be dependent on one dominant member. For example, HeLa cells are strictly dependent on Mcl-1 for survival, whereas HT29 colon carcinoma cells are not dominantly dependent on one particular antiapoptotic Bcl-2 member (28). The recently developed technique of BH3 profiling has been immensely useful in defining which antiapoptotic proteins play the primary role in survival (29). Applying this technique (Fig. 2), we found that RS4;11 cells and the primary ALL cell cultures exhibited a BH3 profiling signature characteristic of cells dependent on Bcl-2. Interestingly though, the primary cultures were much more sensitive to ABT-263, up to 100-fold, than RS4;11 cells. Furthermore, ALL-2, which had the lowest relative expression of Bcl-2 (Fig. 1), was among the most sensitive to ABT-263 (Table 1). Taken together, these findings indicate that factors other than Bcl-2 expression and Bcl-2 dependency play a role in ABT-263 response. One of the established factors in ABT-263 resistance is Mcl-1 expression (36–39), and we formally demonstrated that overexpressed Mcl-1 conferred ABT-263/199 resistance (Fig. 5). However, endogenous levels of Mcl-1 were similar for RS4;11 cells and the primary ALL cultures, so this parameter alone cannot explain the differential response. A recent study has shed light on determinants of ABT-263 sensitivity (40). It was found that cells sensitive to ABT-263 expressed high levels of both Bcl-2 and Bim, and furthermore that a critical function of Bim was to be available to bind and inhibit Mcl-1. These findings are consistent with those reported by others, which have shown a key role for Bim:Bcl-2 complexes in ABT-263 responsiveness (37, 41, 42), and furthermore suggest that, in addition to its established role as an activator, the Bim released from Bim:Bcl-2 complexes by ABT-263 has additional responsibilities as a Mcl-1 neutralizer. These and other observations indicate that the relative occupancy and availability of not only the targeted antiapoptotic protein, Bcl-2 or Bcl-xl, but also the nontargeted antiapoptotic protein, Mcl-1, is critical in dictating the degree of ABT-263 sensitivity. Overall, the data available to date highlight the complex underpinnings of the ABT-263 response.

It is well established that a key role for antiapoptotic Bcl-2 proteins is sequestration and inactivation of proapoptotic Bcl-2 family members. While Bcl-2 potentially can bind many proapoptotic family members, the number and nature of binding partners in specific contexts have not been fully explored. Coimmunoprecipitation was used to identify the spectrum of proapoptotic Bcl-2 proteins bound to Bcl-2, and the results demonstrated the multifaceted role of Bcl-2 in binding several proapoptotic Bcl-2 proteins (Figs. 3 and 4). Bcl-2 in primary ALL cells was found in complex with Bak, Bax, Bim, and Bik. Thus, Bcl-2 sequesters members of all three proapoptotic subgroups, namely effector (Bak, Bax), activator (Bim), and sensitizer (Bik). We showed that high levels of Mcl-1 can maintain survival of ABT-263/199–treated cells and does so, at least in part, by binding Bim. This further underscores the key roles of Bim:Bcl-2 complexes in ABT-263 sensitivity and Mcl-1 in ABT-263 resistance.

In addition to their use and success as single agents (12–16), BH3 mimetics hold much promise as chemosensitizers for new and conventional cancer drugs. Recent work has shown additive or synergistic effects of ABT-263 when combined with other anticancer agents. For example, ABT-263 enhanced the actions of etoposide, vincristine, bortezomib, cyclophosphamide, as well as several drug combination regimens, in vitro and in vivo in several hematologic tumor models (43). In ALL cell lines, ABT-263 was found to synergize with several different antineoplastic agents including daunorubicin, bortezomib, apicidin, and the multityrosine inhibitor sunitinib (34). With the development and availability of an
increasing number of novel targeted agents for cancer, including a broader array of compounds targeting antiapoptotic Bcl-2 proteins (12–14), there are now many more agents and combinations than can be systematically studied clinically. In addition, the drug responsiveness of established cell lines may differ from the primary cells from which they were derived. Thus, there is an urgent need for appropriate cancer cell culture models, and advances in preclinical drug development will increasingly depend on these. The results presented here indicate that the ALL cell cultures represent a valuable model system for preclinical testing of novel agents and drug combinations for ALL.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: S.E. Alford, A. Kothari, T.C. Chambers

Development of methodology: S.E. Alford, A. Kothari, T.C. Chambers

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S.E. Alford, A. Kothari, F.C. Loeff, J.H.F. Falkenburg

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S.E. Alford, A. Kothari, F.C. Loeff, J.M. Eichhorn, R.L. Saylors, J.H.F. Falkenburg

Writing, review, and/or revision of the manuscript: S.E. Alford, A. Kothari, F.C. Loeff, J.M. Eichhorn, R.L. Saylors, J.H.F. Falkenburg

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): S.E. Alford, A. Kothari, H.M. Goselink

Study supervision: A. Kothari, T.C. Chambers

Acknowledgments

The authors thank Anthony Letai for providing the Mcl-1- and Bcl-2-dependent leukemia cell lines and for assistance with BH3 profiling. Jason Farraz for providing the NALM-6 cell line, Masahiro Higuchi for use of the fluorescence microplate reader, and Peter Emanuel for support and interest.

Grant Support

This work was supported by NIH grant CA-109821 from the NCI (T.C. Chambers) and in part by pilot funds from Translational Research Institute grant U1TR000039 (T.C. Chambers).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received June 20, 2014; revised November 19, 2014; accepted December 29, 2014; published OnlineFirst February 3, 2015.

References

BH3 Inhibitor Sensitivity and Bcl-2 Dependence in Primary Acute Lymphoblastic Leukemia Cells

Sarah E. Alford, Anisha Kothari, Floris C. Loeff, et al.

Cancer Res 2015;75:1366-1375. Published OnlineFirst February 3, 2015.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-14-1849
Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2015/02/03/0008-5472.CAN-14-1849.DC1

Cited articles This article cites 43 articles, 12 of which you can access for free at: http://cancerres.aacrjournals.org/content/75/7/1366.full#ref-list-1
Citing articles This article has been cited by 5 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/75/7/1366.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/75/7/1366. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.