### Table of Contents

**BREAKING ADVANCES**

1539 Highlights from Recent Cancer Literature

**REVIEWS**

1541 Accuracy of Molecular Data Generated with FFPE Biospecimens: Lessons from the Literature
Sarah R. Greytak, Kelly B. Engel, B. Paige Bass, and Helen M. Moore

1548 Mesoscopic and Macroscopic Optoacoustic Imaging of Cancer
Adrian Taruttis, Gooitzen M. van Dam, and Vasilis Ntziachristos

**PRIORITY REPORT**

1560 Evaluating Patient-Derived Colorectal Cancer Xenografts as Preclinical Models by Comparison with Patient Clinical Data
Manoel Nunes, Patricia Vrignaud, Sophie Vacher, Sophie Richon, Astrid Lièvre, Wulfian Cacheux, Louis-Bastien Weiswald, Gerald Massonnet, Sophie Chateau-Joubert, André Nicolas, Coletie Dib, Weidong Zhang, James Watters, Donald Bergstrom, Sergio Roman-Roman, Ivan Bieche, and Virginie Dangles-Marie

**MICROENVIRONMENT AND IMMUNOLOGY**

1580 Chaperone Hsp47 Drives Malignant Growth and Invasion by Modulating an ECM Gene Network
Jieqing Zhu, Gaofeng Xiong, Hanjiang Fu, B. Mark Evers, Binhua P. Zhou, and Ren Xu

**PÉRİÇ: These findings define a microRNA-controlled nodal hub that regulates expression and deposition of extracellular matrix proteins needed to drive malignant growth and invasion of breast cancer cells, with potential implications for therapy and prevention in this disease.**

1592 Notch Suppresses Angiogenesis and Progression of Hepatic Metastases

**PÉRİÇ: This important preclinical study suggests a new perspective on the clinical risks of Notch inhibitors in development for cancer treatment based on evidence that these agents may facilitate formation of metastatic lesions in the liver.**

1603 Antitumor Immunity Triggered by Melphalan Is Potentiated by Melanoma Cell Surface–Associated Calreticulin

**PÉRİÇ: Immunogenic effects of a limb-perfused chemotherapeutic used for locoregional treatment of melanoma can be leveraged by coadministration of a sterile danger signal that can heighten antitumor immunity.**

1615 MDSC and TGFβ Are Required for Facilitation of Tumor Growth in the Lungs of Mice Exposed to Carbon Nanotubes

**PÉRİÇ: Studies in a mouse model of nanomaterial-induced pulmonary inflammation show how myeloid-derived suppressor cells act to condition a local tissue niche to support growth of lung cancer.**
1703 FOXP3 Controls an miR-146/NF-κB Negative Feedback Loop That Inhibits Apoptosis in Breast Cancer Cells
Runhua Liu, Cong Liu, Dongquan Chen, Wei-Hsiung Yang, Xiuping Liu, Chang-Gong Liu, Courtney M. Dugas, Fei Tang, Pan Zheng, Yang Liu, and Lihong Wang
Précis: FOXP3 is a master regulator of regulatory T cells that limit antitumor immunity, but it also functions as an X-linked tumor suppressor gene in breast cancer, where the pathways it controls may offer direct therapeutic targets.

1714 FOXP3–miR-146–NF-κB Axis and Therapy for Precancerous Lesions in Prostate
Runhua Liu, Bin Yi, Shi Wei, Wei-Hsiung Yang, Karen M. Hart, Priyanka Chauhan, Wei Zhang, Xicheng Mao, Xiuping Liu, Chang-Gong Liu, and Lihong Wang
Précis: FOXP3 is best known as an expression biomarker for regulatory T cells that promote immune escape in cancer, but it can be altered in prostate tumor cells themselves, where it directly participates in tumorigenesis.

1725 IKKβ Enforces a LIN28B/TCF7L2 Positive Feedback Loop That Promotes Cancer Cell Stemness and Metastasis
Chong Chen, Fengqi Cao, Lipeng Bai, Yan Liu, Junling Xie, Wei Wang, Qin Li, Jian Yang, Antao Chang, Dong Liu, Dachuan Liu, Tsung-Hsien Chuaung, Rong Xiang, and Yunping Luo
Précis: This important study defines a nodal positive feedback loop that reinforces cancer stemness driven by pro-inflammatory processes, with important implications for understanding progression and metastasis and for conceptualizing a novel generalized intervention in advanced cancers.

1736 RIP1 Kinase Is an Oncogenic Driver in Melanoma
Précis: These findings reveal a well-established regulator of cell death to be an oncogenic driver, with potential implications for its candidacy as a therapeutic target in melanoma.

1749 Modification of Helicobacter pylori Peptidoglycan Enhances NOD1 Activation and Promotes Cancer of the Stomach
Giovanni Suarez, Judith Romero-Gallo, M. Blanca Piazuelo, Ge Wang, Robert J. Maier, Lennart S. Forsberg, Parasiso Azadi, Martin A. Gomez, Pelayo Correa, and Richard M. Peek, Jr.
Précis: This study provides mechanistic insights into how chronic infections of the stomach with the bacteria H. pylori increase risks of developing gastric cancer.

1760 Hyperthermia Sensitizes Glioma Stem-like Cells to Radiation by Inhibiting AKT Signaling
Précis: These preclinical findings show how hyperthermia treatments can reduce the inherent radioresistance of glioma stem cells, with clinical implications for improving the treatment of glioblastoma.

CORRECTIONS

1770 Correction: Fearful Symmetry: Subversion of Asymmetric Division in Cancer Development and Progression

1771 Correction: Autophagic Survival in Resistance to Histone Deacetylase Inhibitors: Novel Strategies to Treat Malignant Peripheral Nerve Sheath Tumors
ABOUT THE COVER

Bruton’s tyrosine kinase inhibitor ibrutinib triggers reduction of collagen content (red staining) in tumors from a transgenic mouse model of pancreatic ductal adenocarcinoma (PDAC). This dramatic reduction in fibrosis is accompanied by a decrease in Ki-67-positive proliferating cells, CD11b^+ leukocytes, and F4/80^+ macrophages. Overall, ibrutinib extends survival of PDAC-bearing mice as monotherapy or in combination with the standard of care chemotherapy gemcitabine. For details, see article by Massó-Vallès and colleagues on page 1675.