Eva1 Maintains the Stem-like Character of Glioblastoma-Initiating Cells by Activating the Noncanonical NF-κB Signaling Pathway

Naoki Ohtsu1, Yuka Nakatani2, Daisuke Yamashita3, Shiro Ohue3, Takanori Ohnishi3, and Toru Kondo1,2

Abstract

Glioblastoma (GBM)-initiating cells (GIC) are a tumorigenic subpopulation that are resistant to radio- and chemotherapies and are the source of disease recurrence. Therefore, the identification and characterization of GIC-specific factors is critical toward the generation of effective GBM therapeutics. In this study, we investigated the role of epithelial V-like antigen 1 (Eva1, also known as myelin protein zero-like 2) in stemness and GBM tumorigenesis. Eva1 was prominently expressed in GICs in vitro and in stem cell marker (Sox2, CD15, CD49f)-expressing cells derived from human GBM tissues. Eva1 knockdown in GICs reduced their self-renewal and tumor-forming capabilities, whereas Eva1 overexpression enhanced these properties. Eva1 deficiency was also associated with decreased expression of stemness-related genes, indicating a requirement for Eva1 in maintaining GIC pluripotency. We further demonstrate that Eva1 induced GIC proliferation through the activation of the RelB-dependent noncanonical NF-κB pathway by recruiting TRAF2 to the cytoplasmic tail. Taken together, our findings highlight Eva1 as a novel regulator of GIC function and also provide new mechanistic insight into the role of noncanonical NF-κB activation in GIC, thus offering multiple potential therapeutic targets for preclinical investigation in GBM.

Introduction

Gliomas are brain tumors possessing the characteristics of glial cells, astrocytes, and oligodendrocytes, and have been classified into four grades (WHO grade I–IV) based on their pathologic features. Glioblastoma (GBM) is the most malignant glioma (WHO grade IV), and patients with GBM have a median survival of approximately one year. Despite tremendous efforts to effectively treat GBM, the overall survival rates of patients with GBM have remained unchanged over the past few decades.

The discovery of GBM-initiating cells (GIC) has had a significant impact on GBM research (1). GICs have a strong self-renewal capability, express stem cell markers, such as CD133 (also known as Prominin1), Sox2, CD15 (also known as Stage-Specific Embryonic Antigen 1 and Lewis X), and CD49f (also known as integrin α6), and are more resistant to radiation and chemotherapy than non-GICs (2–5). GICs have also been shown to exploit the signaling pathways that are involved in the maintenance of neural stem cells (NSC; refs. 2–5). NSCs exist only in the subventricular zone and hippocampus (6, 7), both of which contain a special microenvironment (niche) for the maintenance of NSCs, whereas GBM arises in many areas in the brain. It currently remains unknown how GICs maintain their stemness in the brain; whether GICs generate their preferable niche anywhere or use an unknown mechanism for their maintenance in non-NSC niches.

We previously established the mouse GIC lines (mGIC), NSCL61 and OPCL61, by overexpressing an oncogenic HRRad61 in p53-deficient NSCs and oligodendrocyte precursor cells (OPC), respectively (8, 9). These mGICs formed transplantable GBM with hypercellularity, pleomorphism, multinuclear giant cells, mitosis, and necrosis, even when as few as ten cells were injected into the brains of nude mice. These findings indicated that they were highly enriched in bona fide GICs. Using DNA microarray analysis, we compared the gene expression profiles of mGICs with those of their parental cells and identified genes that increased and decreased in mGICs. By evaluating the candidate genes using human GICs (hGICs) and GBM tissues, we have successfully selected potential GIC-specific genes (8–11).

Among the candidate genes evaluated, we focused on epithelial V-like antigen 1 (Eva1, also known as myelin protein zero-like 2). Eva1 was originally identified as an immunoglobulin superfamily member expressed on the developing thymus epithelial cell membrane and disappeared in the developed one (12–14). Eva1 was also shown to be involved in the T-cell development through the Eva1–Eva1 homophilic interaction between CD4/CD8 double-positive cells and thymus epithelial cells in the early embryo (12–14); however, there was no detectable phenotype, including hematopoietic development, in the Eva1 knockout mice (12–15; Ohtsu and colleagues, unpublished observation). Notably, it has not been shown that Eva1 was involved in either tumorigenesis or stemness. These findings led us to investigate
whether Eva1 can be a novel GIC marker and/or a potential therapeutic target.

Here, we show the evidence that Eva1 is expressed on GICs and its modulation impacts GIC characteristics, including stemness-related gene expression, side population, self-renewal activity and tumorigenesis, through the noncanonical NF-kB signaling pathway, providing a new molecular mechanism that maintains GIC characteristics.

Materials and Methods

Animals and chemicals

Mice were obtained from the Laboratory for Animal Resources and Genetic Engineering at the RIKEN Center for Developmental Biology (Hyogo, Japan) and from Charles River Japan, Inc. All mouse experimental protocols were approved by the Animal Care and Use Committees of RIKEN Center for Developmental Biology, Ehime University (Ehime, Japan), and Hokkaido University (Hokkaido, Japan). Chemicals and growth factors were purchased from Sigma-Aldrich and Peprotech, respectively, except where otherwise indicated.

Cell culture

Mouse primary NSCs, NSCL61 cells, human NSCs (bNSCs, Invitrogen), and GICs (hGICs, E2, E3 and E6) were cultured in DMEM/F12 (Gibco, BRL) supplemented with BFGF (10 ng/mL) and EGF (10 ng/mL; NSC medium), as described previously (8–11, 16). For immunostaining, cells were cultured in chamber slides (Nunc) precoated with fibronectin and poly-c-lysine, as described previously (16).

Immunostaining

Immunostaining of paraffin-embedded human brain-tumor sections (6 μm thick) and mouse cells or brain sections was performed as described previously (8). Eva1 was retrieved by fixed and permeabilized in 4% paraformaldehyde at 4°C overnight, transferred to 70% ethanol, processed on Tissue-Tek VIP (Sakura Finetek Japan), and embedded in paraffin. Coronal sections (6-μm thick) from the cerebral cortex were prepared on a microtome and stained with hematoxylin and eosin (H&E).

RT-PCR

RT-PCR was performed as described previously (16), with the cycle parameters of 20 seconds at 94°C, 30 seconds at 57°C, and 60 seconds at 72°C for 35 cycles (GICs) or 40 cycles (GBM tissues). Cycles for gapdh were 15 seconds at 94°C, 30 seconds at 53°C, and 90 seconds at 72°C for 22 cycles. The following oligonucleotide DNA primers were synthesized: for eva1, as follows: 5’ primer, 5’-TTCCT-GACCCATTCGCCCCTG-3’; 3’ primer, 5’-CCGCCCATGGCTTTCTGC-3’. The primers for gapdh were as described previously (16).

Vector construction

cDNAs were cloned as described previously (8). Human eva1 cDNA was inserted into the pMX-EGFP, pcDNA3.1-hyg (Invitrogen), and pcDNA3-2xFLAG-c vectors to produce pMX-EGFP-heva1, pcDNA3.1-hyg-heva1, and pcDNA3-heva1-2xFLAG-c, respectively. The following oligonucleotide DNA primers were synthesized to amplify full human eva1 cDNA: 5’ primer, 5’-CTAGCTCTGAGTCTGGTCC-3’; 3’ primer, 5’-CTTAGTCTGTGTCTTCTAAATAAACA-3’. To construct the FLAG-tagged human eva1 expression vector, the following oligonucleotide DNA primers were synthesized: for eva1, as follows: 5’ primer, 5’-TTCCT-GACCCATTCGCCCCTG-3’; 3’ primer, 5’-CCGCCCATGGCTTTCTGC-3’. The primers for gapdh were as described previously (16).

Flow cytometry

Flow cytometry was performed as described previously (11). The following antibodies were used to detect antigens: rabbit polyclonal anti-Eva1 (5 μg/mL), mouse monoclonal anti-CD15 (5 μg/mL; BD Pharmingen) and biotinylated mouse monoclonal anti-CD49f (Affymetrix; 1:100). Antibodies were detected with APC-conjugated goat anti-mouse IgG (Santa Cruz Biotechnology; 1:200) and PE-conjugated goat anti-rabbit IgG (Santa Cruz Biotechnology; 1:200). The cells were analyzed in an Aria II (Becton Dickinson) using a dual-wavelength analysis (488 nm solid-state laser and 638 nm semiconductor laser). Propidium iodide–positive (i.e., dead) cells were excluded from the analysis.

The SP was analyzed as shown previously (11). Reserpine (10 μmol/L), an inhibitor of some ABC transporters, was used to identify SP.

Human brain tumors

Human GICs were used according to the research guidelines of the Ehime University Graduate School of Medical Science and the Hokkaido University Institute for Genetic Medicine. Poly(A)-RNA was prepared using a QuickPrep mRNA Purification Kit (GE Healthcare). Control human brain total mRNA was purchased from Invitrogen. cDNA was synthesized using a Transcription First Strand cDNA Synthesis Kit (Roche).

Intracranial cell transplants in the NOD/SCID mouse brain and brain-tumor histopathology

NSCL61 cells or hGICs were suspended in 5 μL of culture medium and injected into the brains of 5- to 8-week-old female NOD/SCID mice under anesthesia with 10% pentobarbital. The stereotactic injection coordinates were 2 mm forward from the lambda, 2 mm lateral from the sagittal suture, and 5 mm deep.

Mouse brains were dissected, fixed in 4% paraformaldehyde at 4°C overnight, transferred to 70% ethanol, processed on Tissue-Tek VIP (Sakura Finetek Japan), and embedded in paraffin. Coronal sections (6-μm thick) from the cerebral cortex were prepared on a microtome and stained with hematoxylin and eosin (H&E).

Ohtsu et al.
work analysis was performed using the Network analysis software (Cytoscape). The knock-down efficiency of these vectors was analyzed by Western blotting (Supplementary Figs. S3 and S7A). The sh target sequences were 5'-GCAGTCAACCGGACAGATGGT-3'; for human eva1 were 5'-GTGCCAGCTGTTGCTCTCT-3' (sh1) and 5'-GGTTGAGCTCTCAAAGTCT-GACC-3' (sh2); for mouse rela and relb were 5'-GAAGAAGAGTCTCTTCAT-3' and 5'-AGCGATCATCAGGAGAAC-3', respectively. The control sh target (egfp) sequence was 5’-GCAAGCITGAAGCCTGATTCA-3’.

Vectors to monitor AP1, SP1, and NF-kB were constructed by inserting oligonucleotides containing four responsible elements (RE) of the transcription factors into the pGL3 promoter vector (Promega) to produce pGL3-AP1 RE, pGL3-SP1 RE, and pGL3-NF-kB RE. The sequences for AP1 RE, SP1 RE, and NF-kB RE were 5'-TACTTAATGACTAATGACTAATGACTAATGACTAA-3', 5'-GGGCGGGTGGTGGGCGGGGTGAGGGCGGGTTGG-3', and 5’-GGGAATTCTCCGGCGCTTCCGG-GAATTTCCGGGACCTGATTCC-3’, respectively. The nucleotide sequences of cloned cDNA were verified using the BigDye Terminator Kit version 3.1 (Applied Biosystems) and ABI sequencer model 3130xl (Applied Biosystems).

We transfected the cells with the vectors using either the Nucleofector device according to the supplier's instructions (Lonza) or Polyethylenimine (PEI), as previously described (7, 18).

Cytotoxicity assay
To examine the function of the NF-kB signaling pathway in GICs, mouse and human GICs were cultured in various concentrations of CAPE (Calbiochem), pterostilbene (Tokyo Chemical Industry Co., LTD.), or DMSO alone (control) for 3 days and assayed for viability by the MTT assay as described previously (8).

Gene microarray and pathway analyses
A 3D-Gene Mouse Oligo chip 24k (23,522 distinct genes, Toray) was used in the DNA microarray analysis. Total RNA was labeled with Cy5 using the Amino Allyl Message AMP II arNA Amplification Kit (Applied Biosystems). The Cy5-labeled arNA pools were hybridized to the microarray according to the supplier’s protocols (www.3d-gene.com). Hybridization signals were scanned using the ScanArray Express Scanner (PerkinElmer) and were processed by GenePixPro version 5.0 (Molecular Devices). The raw data of each spot were normalized by the global normalization method (the median of the detected signal intensity was adjusted to 25). The signals detected for each gene were normalized by the global normalization method (the median of the detected signal intensity was adjusted to 25). The signals detected for each gene were normalized by the global normalization method (the median of the detected signal intensity was adjusted to 25). The signals detected for each gene were normalized by the global normalization method (the median of the detected signal intensity was adjusted to 25). The signals detected for each gene were normalized by the global normalization method (the median of the detected signal intensity was adjusted to 25).

Immunoprecipitation and Western blotting
Immunoprecipitation was performed as previously described (19). Cell lysates were incubated with Protein G sepharose (GE Healthcare) and the anti-Eva1 (2 μg/mL) antibody for 4 hours at 4°C. The mixtures were centrifuged, and the precipitants were triple-washed and analyzed by Western blotting.

Western blotting was performed as previously described (19). The blotted membranes were probed with an anti-Eva1 (2 μg/mL), rabbit anti–NF-kB2 (Cell Signaling Technology; 1:500), mouse anti-clAP (R&D Systems; 1:500), rabbit anti-TRAF2 (Cell Signaling Technology; 1:500), rabbit anti-NIK (Cell Signaling Technology; 1:500), anti-RelA (Sigma; 1:500), anti-RalB (Cell Signaling Technology; 1:500), or mouse anti–GA PDH antibody (Chemicon; 1:1000). An ECL system (Amersham) was used for detection.

Luciferase assay
Luciferase was assayed as described previously (19). Using PEI, NSC61L cells were transfected with either the heva1 expression vector or relax or relbsh shRNA expression vector. The cells were cultured in the presence of Hygromycin B (0.2 mg/mL). NSC61L cells were also infected with a recombinant retrovirus encoding T2DN, and DsRed+ cells were purified by flow cytometry. The selected cells were then transfected with 0.3 μg of the AP1, SP1, or NF-kB reporter vectors encoding firefly luciferase, along with 0.03 μg of the internal control vector pRL-EF1 (Promega), which encoded sea pansy luciferase. After 2 days, the activities of the two types of luciferases were measured using the Dual-Luciferase Reporter Assay System according to the supplier's instructions (Promega).

The Cancer Genome Atlas analysis
Relationship between eva1 expression and the prognosis of GBM patients, percentage of survival and percentage of disease free, was analyzed by using the cBioPortal (20, 21). Each 27 microarray data of human GBM and Lower Grade Glioma (LGG) were obtained from The Cancer Genome Atlas (TCGA) and analyzed for the expression levels of eva1, cd15, sso2, and cd49f.

Statistical analysis
Survival data were analyzed for significance by Kaplan–Meier methods using GraphPad Prism version 4 software (P values were calculated by the log-rank test). In vitro studies were analyzed by two-tailed Student t test, with significant difference defined as P < 0.05.

Results
Eva1 was identified as a novel GIC marker
We first examined the expression of eva1 in mGICs, NSC61L and OPC61L, and hGICs, E2, E3, and E6 that were prepared from human GBM tissues (8, 10), using RT-PCR. As shown in Fig. 1A, eva1 expression was higher in GICs than in their control cells, mNSC, mOPC, and normal hNSC. We confirmed the increased Eva1 expression in human and mouse GICs by Western blotting (Fig. 1B) and qRT-PCR (Fig. 1B and Supplementary Fig. S1A and S1B). Immunocytochemical analysis revealed that over 90% of cultured human and mouse GICs were positive for Eva1 (Fig. 1C and Supplementary Fig. S2C, respectively). These Eva1-positive cells existed in human GBM and were coimmunolabeled for a
well-known NSC marker Sox2 (>80%, Fig. 1D), a GIC marker CD15 (Fig. 1E), and CD49f (Fig. 1F; refs. 22–24). Flow-cytometric analysis showed that 2.1% of the freshly prepared GBM cells were Eva1+ and that about 70% and 50% of Eva1+ cells were also positive for CD15 and CD49f, respectively (Fig. 1G and H). We further found that Eva1 was undetectable in the adult mouse brain (P100), although it was restrictedly expressed in developing mouse neuroepithelial cells (at E18 and P1) that included multipotent NSCs (Supplementary Fig. S2D; refs. 25–27). Taken together, these results indicated that Eva1 is a potential GIC marker.

Eva1 was prominently expressed in GBM, but not in other gliomas, such as anaplastic oligodendroglioma (AO, WHO grade III), anaplastic oligoastrocytoma (AOA, WHO grade III), or oligodendroglioma (OLI, WHO grade II; Fig. 2A and B). The cBioPortal Data (http://www.cbioportal.org/index.do?cancer_
study_list=&cancer_study_id=all&data_priority=&gene_set_choice=user-defined-list&gene_list=&clinical_param_selection=null&tab_index=tab_visualize; refs. 21, 22) suggested that the prognosis of GBM patients with elevated eva1 mRNA levels (black dashed line, Z-score > 2) was worse than the other (gray solid line); median survival and median disease free of the patients (dashed black line) with elevated eva1 were 10.41 and 2.89 months (M), whereas those of the other (solid gray line) were 12.98 and 7 M, respectively (Fig. 2C). TCGA analysis (http://cancergenome.nih.gov) further revealed that expression of eva1 significantly increased in GBM compared with LGG, whereas that of CD15, Sox2, or CD49f did not (Fig. 2D). These results suggested that Eva1 is a new prognostic marker for GBM.

Eva1 was involved in the GIC proliferation and tumorigenesis

We analyzed the function of Eva1 in GICs using eva1 and its specific shRNA (sh1 and sh2) expression vectors (Supplementary Fig. S3). Overexpression of eva1 increased the expression of stemness genes, Sox2, CD15, and CD49f, and the self-renewal activity in GICs, whereas its knockdown blocked these activation (Fig. 3A–C and Supplementary Fig. S4A and S4B). hGICs formed malignant tumor with hypercellularity and mitosis when injected into the brains of immunodeficient mice, whereas the eva1sh-expressing cells did not and the mice injected with the eva1sh-expressing GICs survived over 3 months (Fig. 3C, data not shown). In addition, enforced expression of eva1 increased self-renewal activity in hGICs (Supplementary Fig. S4B) and enhanced tumorigenicity of two primary human gliomasphere lines established from AO (Fig. 3D and E) and diffuse astrocytoma (DA, WHO grade II, Fig. 3F and G), both of which were Eva1 negative. These Eva1-overexpressing AO and DA cells killed mice more quickly (30 and 55 days, respectively, n = 6) than their parental cells (over 60 and 90 days, respectively, to form tumors, n = 6; Fig. 3E and G, respectively) when inoculated into the
immunodeficient mice intracranially. Together, these results clearly indicated that Eva1 is involved in the GIC proliferation and tumorigenesis.

Eva1 increased the expression of stemness-related genes and the side population through the NF-κB activation in GICs

In order to identify the molecular mechanism that regulated by Eva1, we compared the gene expression profile of NSCL61 with that of eva1sh-expressing NSCL61. We found that 1,208 genes were upregulated while 650 were downregulated in eva1sh-expressing NSCL61 (Supplementary Fig. S5A). We noted a significant downregulation in the expression of stemness-related genes, including aldehyde dehydrogenase 1a3 (aldh1a3), hairy/enhancer-of-split related with YRPW motif protein 1 (hey1), notch 4, jagged 1 (jag1), cytokine receptor 4 (cxcr4), pr domain containing 16 (prdm16), and syndecan 1 (sdc1). The expression of the ATP-Binding Cassette (ABC) transporter G2 (abcg2) also decreased in the eva1sh-expressing NSCL61 (Log2 ratio: −0.6). Using RT-PCR, we confirmed the decreased expression level of stemness-related genes, aldh1a3, hey1, prdm16, notch4, and abcg2 in eva1sh-expressing NSCL61 (Supplementary Fig. S5B). These results suggested that Eva1 widely regulates the stemness-related gene expression in GICs. Indeed, overexpression of Eva1 increased the SP in hGICs (E3: 21%, E6: 24%), whereas that of eva1sh abolished the population (E3: 22% − 0.3% (sh1) and 1.9% (sh2); E6: 24% − 0.3% (sh1) and 1.2% (sh2); Fig. 4A and B). Eva1 level also affected Nestin expression in hGICs and its knockdown significantly increased the differentiation marker-positive cells (Fig. 4C–F). Apparently, these data indicated that Eva1 is involved in the stemness maintenance in GICs.

Network Analysis software in MetaCore (GeneGO) revealed the knockdown of Eva1 in NSCL61 influenced the expression of a number of oncogenic transcription networks,
Eval levels affected SP and neural marker expression in hGICs. A, increased SP in eval-overexpressing E3 and E6. B, decreased SP in evalsh- and sh2-overexpressing E3 and E6. Flow-cytometric experiments were repeated at least three times with similar results. C–F, ratio of the neural stem/differentiation marker-positive E3 (C and E) and E6 (D and F). White columns show control cells. Black and gray columns show eval-(C, D), evalsh- and sh2-(E and F) overexpressing cells. Data are presented as the mean of three independent experiments. Error bar, ±SD. *P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001 significantly different from control.

including p53, Hypoxia-inducing factor 1α (HIF1α), c-Myc, NF-kB, and STAT3 (Supplementary Fig. S5C). Of these, we focused on NF-kB because the Eukaryotic Linear Motif resource for Functional Sites in Proteins (ELM) database (http://elm.eu.org/) indicated that the cytoplasmic region of Eva1 contains a consensus binding site for TRAF2, a key regulator in the NF-kB signaling pathway (28), and the Champion ChiP Transcription Factor Search Portal based on the SABiosciences’ proprietary database (http://www.sabiosciences.com/chipqpcrsearch.php) indicated that Eva1-downstream stemness-related genes, aldfr1a3, hey1, notch4, jag1, ccr4, and sdc1, contain the putative NF-kB–binding sites.

To evaluate whether Eva1 activates the NF-kB signaling pathway, we inserted four copies of a NF-kB response element into a reporter vector that contained a minimal SV40 promoter upstream of the firefly luciferase gene. We also constructed two other reporter vectors that contain four copies of a response element for AP1 and SP1 transcription factors, both of which were affected the most in evalsh-expressing NSCL61. We transfected these vectors into NSCL61 and found the increased luciferase activity when transfected with the NF-kB-reporter vector (white columns in Supplementary Fig. S6A). We also detected the NF-kB–dependent luciferase activity in hGICs (white columns in Fig. 5A). Using evalsh- and eval-overexpressing hGICs and NSCL61, we found that NF-kB–dependent luciferase activity correlated with Eva1 levels (Fig. 5A and B and Supplementary Fig. S6A and S6B). To further verify the role of NF-kB signaling in GICs, we used two NF-kB inhibitors, caffeic acid phenethyl ester (CAPE) and pterostilbene (29, 30). These inhibitors dramatically blocked the proliferation of both hGIC and NSCL61 in a dose-dependent manner (Fig. 5C and D and Supplementary Fig. S6C). In addition, CAPE also inhibited the proliferation of Eva1-overexpressing DA cells, while it partially repressed the proliferation of parental cells (Fig. 5E). Taken together, these findings revealed that the Eva1 plays a role in the stemness maintenance of GICs and their proliferation through the activation of NF-kB signaling pathway.

The noncanonical NF-kB signaling pathway is essential for GIC proliferation and tumorigenesis

The receptor-mediated activation of NF-kB has been shown to induce the expression of many genes that regulate inflammation,
cell proliferation, immune responses, and tumorigenesis through either canonical or noncanonical signaling pathways (31, 32). RelA/p50NF-κB1 and RelB/p52NF-κB2 complexes have been identified as key components in the canonical and noncanonical NF-κB signaling pathways, respectively, while the receptor-binding protein TRAF2 was shown to regulate both pathways (28, 31, 32). We addressed which of these pathways was crucial for GICs. Using rela- and relb-shRNA expression vectors (relash and relbsh, respectively; Supplementary Fig. S7A), we found that the depletion of RelB, but not RelA, inhibited the NF-κB-dependent luciferase activity in hGICs and NSCL61 (Fig. 6A and Supplementary Fig. S7B, respectively). The knockdown of RelB also blocked the proliferation of E3, NSCL61, and Eva1-overexpressing DA cells and the self-renewal activity of hGICs (Fig. 6C and Supplementary Figs. S7C and S4C, respectively; data not shown for Eva1-expressing DA cells). In addition, RelB knockdown completely abolished tumorigenesis of NSCL61 in vivo (Supplementary Fig. S7D). We further found the increased levels of RelB, NIK, a key noncanonical NF-κB–inducing kinase (28, 31, 32), and the mature form (p52) of NF-κB2 (immature form: p100) in primary human GBM tissues (Fig. 6D). Furthermore, prognosis of GBM patients with elevated relB mRNA levels (red line) was worse than the others (blue line; Supplementary Fig. S8A, Z-score > 2) and the expression of relB significantly increased in GBM compared with in LGG (Supplementary Fig. S8B). Together, these data indicated that RelB is essential for GIC proliferation and tumorigenesis.

Eva1 activated the noncanonical NF-κB signaling pathway through NIK stabilization and NF-κB2 maturation in GICs

To confirm whether Eva1 activates the RelB-dependent noncanonical NF-κB pathway, we used the Eva1-overexpressing DA cells. As shown in Fig. 6E, Eva1 overexpression significantly increased the level of RelB, NIK, and the mature form of NF-κB2 (p52) in DA cells. A previous study reported that NIK was destabilized by a complex with TRAF2, TRAF3, and the cellular inhibitor of apoptosis (cIAP), while TRAF2 and cIAP were degraded by the proteasome in the receptor-mediated NF-κB–activation pathway (33). Together with that Eva1 cytoplasmic tail contains a putative TRAF2-binding site, these suggest that Eva1 sequesters the TRAF2 and cIAP-containing complex and induces its degradation, thereby resulting in the accumulation of NIK in GICs. To
Eva1 Is a Novel GIC Regulator

Discussion

Eva1 was originally identified as an immunoglobulin superfamily member expressed on the developing thymus epithelial cells and was shown to be involved in the T-cell development in the early embryo (12, 13). Because Eva1 knockout mice did not show any detectable phenotypes (15, Ohtsu and colleagues, unpublished observation), Eva1 is dispensable for the embryonic development, including hematogenesis and neurogenesis. Using human and mouse GIC models, we demonstrated here that Eva1 induces GIC proliferation and tumorigenesis through the activation of RelB-dependent noncanonical NF-κB signaling pathway. Since Eva1 was shown to act as a hemophilic-binding protein, GICs may be influenced by the Eva1-expressing surrounding cells, and vice versa. Indeed, we found that RORγT (Th17-determining transcription factor)-expressing T-helper 17 cell (Th17), which behaves as either protumorigenic or anti-tumorigenic cells depending on their internal and external factors, was positive for Eva1 and associated with Eva1+/RORγT− cells in human GBM tissues (Supplementary Fig. S9 and refs. 34–40). Our findings suggest that Th17 cells act as tumor-supporting cells through Eva1-dependent intercellular association with GICs. In turn, it is feasible that GICs induce Th17 differentiation by activating the RelB pathway, which is necessary for the induction of RORγT, and supplying TGFβ1 and IL6 (40, 41). Thus, it is essential to further investigate the reciprocity between GICs and their surrounding cells, including Th17 cells, through Eva1-trans-homophilic binding in the GBM niche.

The DNA microarray results obtained in the present study revealed that Eva1 induces the expression of a number of stemness-related genes, including Notch-related factors and ABCG2, and activates stemness-related signaling pathways, such as STAT3, in GICs. In fact, we confirmed that Eva1 overexpression increased the SP and Nestin-positive cells in hGICs, whereas Eva1 knockdown not only decreased the population, but also induced neural differentiation in hGICs. Since it is well known that Notch and STAT3 signaling pathways play essential roles for the stemness maintenance (42–45), Eva1 may also exploit these signaling pathways as well as the NF-κB one for the GICs maintenance.

Figure 6. Eva1 regulates hGIC proliferation through the RelB/NF-κB2 pathway. A, the overexpression of relbsh decreased NF-κB-dependent luciferase activity in E3 and E6. B and C, the enforced expression of relbsh blocked the proliferation of E3 (B) and eva1-overexpressing DA cells (C). D, the expression of NIK, NF-κB2, RelA, and RelB in the control brain (CB) and GBM tissue was analyzed by Western blotting. E, the expression of NIK, NF-κB2, RelA, and RelB in the control brain (CB) and GBM tissue was analyzed by Western blotting. F, endogenous TRAF2 and cIAP coimmunoprecipitated with exogenous Eva1 in the presence of a proteasome inhibitor (PI) in DA cells. G, a model of Eva1-dependent activation of the noncanonical NF-κB signaling pathway. The experiments were repeated at least three times with similar results. Error bar, ±SD. t test was used for statistical significance. *, P < 0.05; **, P < 0.01; ***, P < 0.001; and ****, P < 0.0001 significantly different from cells expressing control shRNA (contsh).
The molecular mechanism underlying the expression of eva1 in GICs has yet to be elucidated. The combination of ionomycin and phorbol 12-myristate 13-acetate (PMA) was shown to induce the expression of eva1 in CD45 T cells (46). However, AP1, a well-known transcription factor activated by PMA (47), was not activated in NSCL61 (as shown in the present study) and there is no consensus binding sites for the PMA/ionomycin-target transcription factors (NFAT and NF-κB) in the eva1 5′ genomic region. The Champion Chip Transcription Factor Search Portal revealed that the eva1 5′ genomic region contains sites for binding cancer- and stemness-related transcription factors, such as c-Myc and STAT3, therefore whether these candidate transcription factors actually regulate the expression of eva1 in GICs should be determined in future studies.

Aberrant canonical and noncanonical NF-κB signalings were previously reported in various types of solid tumors including GBM (48–50). NF-κB activation has been further shown to make GICs be resistant to irradiation through the acquisition of mesenchymal phenotypes (50). We found that E3 is the proneural type of GIC, which strongly express elg2, dll3 and ascl1, whereas E6 is the mesenchymal type one, which prominently express serpine1, chi3li (also known as ykl40), vegfc, and runx1, although noncanonical NF-κB signaling was activated in both GICs. Together, these findings suggested that noncanonical NF-κB signaling could not induce mesenchymal phenotypes in GICs (10, data not shown). Nonetheless, since the ablation of noncanonical NF-κB signaling could block GIC proliferation and their tumorigenesis, the specific inhibitor for the pathway can be a promising new therapeutic drug for GBM.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: T. Kondo
Development of methodology: T. Kondo
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): N. Ohtsu, Y. Nakatani, D. Yamashita, S. Ohue, T. Ohnishi, T. Kondo
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): N. Ohtsu, D. Yamashita, T. Kondo
Writing, review, and/or revision of the manuscript: T. Kondo
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): Y. Nakatani, D. Yamashita, T. Ohnishi, T. Kondo
Study supervision: T. Kondo
Other (financial support): T. Kondo

Acknowledgments
The authors thank Martin Raff for his helpful suggestions and critical reading of the manuscript, and Satoshi Kondou for performing the DNA microarray and pathway analyses.

Grant Support
This work was supported, in part, by the Japan Advanced Molecular Imaging Program (J-AMP) and a research program of the Project for Development of Innovative Research on Cancer Therapeutics (P-DIRECT), Ministry of Education, Culture, Sports, Science and Technology of Japan (T. Kondo).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 6, 2015; revised September 16, 2015; accepted October 2, 2015, published OnlineFirst December 17, 2015.

References
Eva1 Maintains the Stem-like Character of Glioblastoma-Initiating Cells by Activating the Noncanonical NF-κB Signaling Pathway

Naoki Ohtsu, Yuka Nakatani, Daisuke Yamashita, et al.

Updated version
Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-15-0884

Supplementary Material
Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2015/12/30/0008-5472.CAN-15-0884.DC1

Cited articles
This article cites 50 articles, 16 of which you can access for free at: http://cancerres.aacrjournals.org/content/76/1/171.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.