PBX3 and MEIS1 Cooperate in Hematopoietic Cells to Drive Acute Myeloid Leukemias Characterized by a Core Transcriptome of the MLL-Rearranged Disease

Zejuan Li1, Ping Chen1, Rui Su2, Chao Hu1,2,3, Yuanyuan Li1, Abdel G. Elkahloun4, Zhixiang Zuo1,3, Sandeep Gurubuxani5, Stephen Arnovitz1, Hengyou Weng1,2, Yungui Wang1,2,3, Shenglai Li1, Hao Huang1, Mary Beth Neilly1, Gang Greg Wang6, Xi Jiang1,2, Paul P. Liu4, Jie Jin5, and Jianjun Chen1,2

Abstract

Overexpression of HOXA/MEIS1/PBX3 homeobox genes is the hallmark of mixed lineage leukemia (MLL)-rearranged acute myeloid leukemia (AML). HOXA9 and MEIS1 are considered to be the most critical targets of MLL fusions and their coexpression rapidly induces AML. MEIS1 and PBX3 are not individually able to transform cells and were therefore hypothesized to function as cofactors of HOXA9. However, in this study, we demonstrate that coexpression of PBX3 and MEIS1 (PBX3/MEIS1), without ectopic expression of a HOX gene, is sufficient for transformation of normal mouse hematopoietic stem/progenitor cells in vitro. Moreover, PBX3/MEIS1 overexpression also caused AML in vivo, with a leukemic latency similar to that caused by forced expression of MLL-AF9, the most common form of MLL fusions. Furthermore, gene expression profiling of hematopoietic cells demonstrated that PBX3/MEIS1 overexpression, but not HOXA9/MEIS1, HOXA9/PBX3, or HOXA9 overexpression, recapitulated the MLL-fusion-mediated core transcriptome, particularly upregulation of the endogenous Hoxa genes. Disruption of the binding between MEIS1 and PBX3 diminished PBX3/MEIS1-mediated cell transformation and HOX gene upregulation. Collectively, our studies strongly implicate the PBX3/MEIS1 interaction as a driver of cell transformation and leukemogenesis, and suggest that this axis may play a critical role in the regulation of the core transcriptional programs activated in MLL-rearranged and HOX-overexpressing AML. Therefore, targeting the MEIS1/PBX3 interaction may represent a promising therapeutic strategy to treat these AML subtypes. Cancer Res; 76(3); 619–29. ©2016 AACR.

Introduction

The mixed lineage leukemia (MLL) gene, located on human chromosome 11 band q23 (11q23), is a common target of chromosomal translocations in acute leukemia. MLL-rearranged leukemia accounts for 5% to 10% of patients with acute myeloid leukemia (AML) and 7% to 10% of patients with acute lymphoblastic leukemia (ALL), approximately 80% of infant acute leukemia, and the majority of patients with therapy-related AML/ALL secondary to therapy that targets topoisomerase II (like etoposide; refs. 1–7). The critical feature of MLL rearrangements is the generation of a chimeric transcript consisting of 5’ MLL and 3’ sequences of one of more than 60 different partner genes (2, 3, 6, 7). MLL-AF9, resulting from (t;9;11)(p22;q23), is the most common form of MLL-fusion genes in AML (2, 6).

Ablative expression of a group of homeobox genes including the Cluster A HOX genes and genes encoding HOX cofactors, e.g., MEIS1 (but not MEIS2 or MEIS3) and PBX3 (but not PBX1 or PBX2), is the hallmark of MLL-rearranged leukemias (8–16). HOXA9 and MEIS1 are the two most well-studied downstream target genes of MLL-fusion proteins; their aberrant overexpression has been considered to be required for the induction and maintenance of MLL-rearranged leukemia (11, 17–19), and their coexpression is sufficient to transform cells and induce rapid leukemia (12, 20–23). In contrast, although PBX3 is also significantly upregulated in MLL-rearranged AML (11–15), the role of PBX3 in leukemogenesis was largely unappreciated. Pbx proteins have been shown to be required for linking Hoxa and Meis1 proteins together (24, 25). However, the previous studies of Pbx genes were focusing on Pbx1, the founding member of the Pbx family, which was shown to have no synergistic effect with Hoxa9 in cell transformation and leukemogenesis (12, 20, 23). Instead,
we recently showed that PBX3 and three HOXA genes (HOXA7, HOXA9, and HOXA11) composed of an independent predictor of unfavorable survival of patients with cytogenetically abnormal AML (CA-AML; ref. 16). We showed further that PBX3, rather than PBX1 or PBX2, is an important cofactor of HOXA9 in cytogenetically abnormal AML and their coexpression can cause development of rapid AML in mice (26). The prognostic impact and essential oncogenic role of PBX3 have also been observed in cytogenetic normal AML (27).

Thus far, both MEIS1 and PBX3 have been shown to be essential cofactors of HOXA9 and coexpression of HOXA9 with either MEIS1 or PBX3 can induce rapid AML (12, 20–23, 26). However, unlike HOXA9, neither MEIS1 nor PBX3 alone can transform normal hematopoietic stem/progenitor cells (HSPC; refs. 20, 21, 23, 26). Thus, MEIS1 and PBX3 were simply recognized as cofactors of HOX proteins (especially HOXA9) and it was believed that they exert their function solely or mainly through cooperating with HOX proteins (18, 24–28). Surprisingly, here we show that without ectopic expression of a HOX gene, coexpression of PBX3 and MEIS1 is sufficient to transform normal HSPCs and induce rapid AML in mice. More interestingly, our genome-wide gene expression profiling analysis shows that forced expression of PBX3/MEIS1, but not that of HOXA9/MEIS1, HOXA9/PBX3, or HOXA9 alone, can induce the core transcriptome (especially, the upregulation of endogenous HOX genes, Pbx3 and Meis1) of MLL-rearranged AML in mice.

Materials and Methods

Retroviral constructs

MSCVneo-HOXA9 and MSCV-PIG-PBX3 plasmids with human gene HOXA9 and PBX3 coding regions, respectively, were constructed previously by us (26). MSCVneo-MLL-AF9 was a kind gift from Dr. Scott Armstrong, Memorial Sloan Kettering Cancer Center, New York, NY (29). MSCV-PIG vector containing a PGK-puromycin-ires-GFP (PIG) cassette was kindly provided by Drs. G. Hanon and L. He, Cold Spring Harbor Laboratory, Spring Harbor, NY (30). MEIS1 coding region sequence was PCR amplified from human normal bone marrow mononuclear cells with primers, forward 5’- ATAGAATTCATGCCCAAGGTAC-3′, and reverse 5’- GGCTCTCGATGATGAAGGTTACA-3′, then was cloned into MSCVneo (Clontech) as MSCVneo-MEIS1, or cloned into MSCV-PIG as MSCV-PIG-MEIS1. Mouse Pbx3 coding region sequence was PCR amplified from mouse normal bone marrow mononuclear cells with primers, forward 5’- AATAGAATTCATGCCTGCGCA-3′, and reverse 5’- AATAGAATTCATGGCGCAAAGGTAC-3′, and was then cloned into MSCV-PIG, as MSCV-PIG-Pbx3. Wild-type and mutant mouse Meis1-coding regions were PCR amplified from MSCVpuro-VP16-Meis1 (WT), MSCVpuro-VP16-Meis1-M2ALRF/ALLEL, and MSCVpuro-VP16-Meis1-D64-202, which were kindly provided by Dr. M.P. Kamps, University of California, San Diego, La Jolla, CA (24, 25), and then subcloned into MSCVneo, as MSCVneo-Meis1, MSCVneo-Meis1-M2ALRF/ALLEL, and MSCVneo-Meis1-D64-202, respectively. All inserts have been confirmed by Sanger sequencing.

Mouse bone marrow transplantation (in vivo reconstitution) assays

For primary bone marrow transplantation (BMT) reconstitution assays, mouse bone marrow progenitor cells from 4- to 6-week-old wild-type (C57BL/6) CD45.2 mice were cotransduced with different retroviral combinations, and were then cultured in methylcellulose, and 100 μm for spleen and liver.
medium to select double-transduction–positive cells. Seven days later, colony cells were collected and washed, and were then injected by tail vein into lethally irradiated (960 rads) 8- to 10-week-old B6.SJL (CD45.1) recipient mice with 0.5 × 10^6 donor cells plus a radioprotective dose of whole bone marrow cells (1 × 10^6; freshly harvested from a B6.SJL mouse) per recipient mouse.

For secondary BMT assays, primary leukemic bone marrow cells were obtained from the primary BMT recipients of the HOXA9+/MEIS1, HOXA9+/PBX3, PBX3+/MEIS1, and MLL-AF9 groups, when the mice developed with full-blown AML. The CD45.1+ leukemic bone marrow cells were sorted by flow cytometry and then injected through tail vein into lethally irradiated (850 rads) 8- to 10-week-old B6.SJL (CD45.1) secondary recipient mice with 5 to 6 donor cells from two independent primary leukemic mice were used as donors for the secondary BMT of each group, with 5 to 6 recipients per donor. Another secondary transplantation assay was conducted with leukemic spleen cells (CD45.1+), obtained from the spleen of primary HOXA9+/MEIS1, PBX3+/MEIS1, and MLL-AF9 AML mice, with 1 × 10^5 donor cells (CD45.1+) plus 1.8 × 10^6 radioprotective whole bone marrow cells (CD45.2) per recipient mouse.

Affymetrix gene arrays of mouse samples

A total of 20 mouse bone marrow samples from the control (NC; n = 5), HOXA9+/MEIS1 (n = 5), HOXA9+/PBX3 (n = 3), HOXA9 (n = 3), PBX3+/MEIS1 (n = 3), and MLL-AF9 (n = 3) AML groups were analyzed with Affymetrix GeneChip Mouse Gene 1.0 ST Array (Affymetrix). For each sample, the CD45.1+ bone marrow cells (i.e., transplanted donor cells) were sorted with flow cytometry from whole bone marrow cells collected from BMT recipients at the end point. One microgram total RNA was used for each sample. The quality control test and array assays were done in the core facility of National Human Genome Research Institute, NIH (Bethesda, MD).

The microarray data have been deposited into the GEO database (GSE68643; Reviewer access: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=clorwkcodjuxy&acc=GSE68643).

Gene set analyses

Gene Set Enrichment Analysis (GSEA; ref. 32) was used to analyze gene sets enriched in different groups of samples. KEGG (Kyoto Encyclopedia of Genes and Genomes Pathway Database) gene set (33) and “chemical and genetic perturbation” gene set obtained from MsigDB (The Molecular Signatures Database; ref. 32) were used as the gene set input for GSEA. The Database for Annotation, Visualization and Integrated Discovery (DAVID; v6.7; refs. 34, 35) was used to analyze gene sets enriched in genes significantly differentially expressed between different groups of samples.

RNA extraction, quantitative RT-PCR, flow cytometry, cytoospin, histologic hematoxylin and eosin staining, and Western blotting

These assays were conducted as described previously (16, 36–39) with some modifications. Antibodies for Pbx3 (sc-891), Hoxa9 (sc-17155), Hoxa7 (sc-17152), and Meis1 (sc-10599) were purchased from Santa Cruz Biotechnology, Inc. Anti-Hoxa5 antibody (ab140636) was purchased from Abcam. Anti-Hoxa4 antibody (PA1603) was purchased from Boster Biological Technology. Anti-β-actin antibody (#3700) was purchased from Cell Signaling Technology, Ltd.

Statistical analyses

Overall survival was estimated according to the method of Kaplan and Meier, and the log-rank test was used to assess statistical significance. The Kaplan–Meier method, log-rank test, and t test were performed with Partek Genomics Suite (Partek Inc.), WinSTAT (R. Fitch Software), and/or Bioconductor R packages. Any P values less than 0.05 were considered statistically significant.
previously (36–38). Continued testing to authenticate this cell line was done using qPCR and Western blot analysis to validate the existence of MLL-AF9 when this line was used in this project. Anti-PBX3 or anti-MEIS1 siRNA oligos and control siRNA oligos were purchased from Dharmaco (Catalog #: L-020121-00-0005, L-011726-00-0005 and D-001810-10-05; GE Healthcare Bio-Sciences), and transduced into MonoMac-6 cells Amaza Nucleo- factor Technology (Amaza Biosystems) at a concentration of 100 nmol/L as described previously (16, 36–38).

Results

Coexpression of PBX3 and MEIS1 is sufficient to transform normal HSPCs

On the basis of previous studies from us and others showing crucial roles of both PBX3 and MEIS1 in AML (16, 24–28), we query whether coexpression of PBX3/MEIS1 can mimic that of HOXA9/MEIS1 or HOXA9/PBX3 in inducing cell transformation. To this end, we conducted in vitro colony-forming/replating assays. As shown in Fig. 1A, PBX3/MEIS1 coexpression (PBX3+MEIS1) was sufficient to transform and immortalize normal mouse bone marrow progenitor cells, although with relatively fewer colonies compared with coexpression of HOXA9/MEIS1 (HOXA9+MEIS1) or HOXA9/PBX3 (HOXA9+PBX3), or forced expression of MLL-AF9. As expected, HOXA9 alone, but neither MEIS1 or PBX3 alone, also transformed mouse bone marrow progenitor cells (Fig. 1A).

Coexpression of PBX3 and MEIS1 induces rapid AML in mice

To determine whether coexpression of PBX3/MEIS1 is also sufficient to induce AML in mice, we conducted in vivo mouse BM responded studies. As shown in Fig. 1B and Supplementary Fig. S1, similar to the coexpression of HOXA9 with MEIS1 or PBX3, coexpression of PBX3 and MEIS1 also caused a rapid AML in mice. The leukemic latency of the PBX3+MEIS1 group was comparable with that of the MLL-AF9 group (P = 0.24; log-rank test) and slightly longer than that of the HOXA9+PBX3 group (P = 0.054), but significantly shorter than that of the HOXA9+PBX3 group (P = 0.021) or HOXA9 alone group (P = 0.0018). Neither MEIS1 nor PBX3 alone caused leukemia within 200 days (Fig. 1B). Notably, mice of the PBX3+MEIS1 group exhibited similar, if not more aggressive, leukemic phenotypes in peripheral blood, bone marrow, spleen, and liver tissues compared with the HOXA9+MEIS1, HOXA9+PBX3, and MLL-AF9 groups (Fig. 1C). Our flow cytometry analysis showed that leukemic bone marrow cells of the PBX3+MEIS1 group had largely similar proportions of Mac-1⁺ (a myeloid lineage cell marker) and/or c-kit⁺ (a stem/progenitor cell marker) cells compared with those of the other AML groups (Supplementary Fig. S1).

PBX3/MEIS1–induced AML is transplantable

To determine whether PBX3/MEIS1–induced AML is transplantable, we conducted secondary transplantation assays. First, we collected leukemic bone marrow cells from primary BMT recipient mice of the HOXA9+MEIS1, HOXA9+PBX3, PBX3+MEIS1, and MLL-AF9 groups and then transplanted into lethally irradiated secondary recipient mice. Leukemic bone marrow cells from two independent primary recipient mice were used as donor cells for the secondary BMT of each group. All secondary BMT recipient mice transplanted with PBX3+MEIS1 primary AML cells developed full-blown AML within 35 days, with similar leukemic latency to those transplanted with HOXA9+MEIS1, HOXA9+PBX3, or MLL-AF9 AML cells (Fig. 2A and B). The two independent donors of each group caused full-blown leukemia with similar latency in secondary recipients (Supplementary Fig. S2). In addition, we also conducted secondary transplantation assays using primary leukemic spleen cells as donor cells, and also found that PBX3+MEIS1 leukemic spleen cells caused full-blown AML in all secondary BMT recipients within 35 days, in a manner similar to HOXA9+MEIS1 or MLL-AF9 leukemia spleen cells (Fig. 2C).

Genome-wide gene expression profiles of PBX3/MEIS1 AML are more similar to those of MLL-AF9 AML than to those of HOXA9/MEIS1, HOXA9/PBX3, or HOXA9 AML

We then conducted microarray-based genome-wide gene expression profiling assays with leukemic or control bone marrow cells collected from primary BMT recipients. Surprisingly, in an unsupervised hierarchical clustering analysis, we found that PBX3+MEIS1 AML samples clustered together with MLL-AF9 AML samples, whereas HOXA9+MEIS1, HOXA9+PBX3, and HOXA9 AML samples formed a separate cluster and so did the normal control samples (see Fig. 3A). Thus, there are three separate groups, including group 1 (normal controls; NC); group 2 (HOXA9+MEIS1, HOXA9+PBX3, and HOXA9), and group 3 (MLL-AF9 and PBX3+MEIS1). We then conducted GSEA (32). No surprise, as both group 2 and 3 samples are leukemia samples with ectopic and/or induced endogenous expression of homeobox genes, they show a series of gene sets that distinguish them from normal control samples. Notably, target genes upregulated by HOXA9 and MEIS1, and genes related to DNA replication, mRNA processing, miRNA biogenesis, RNA metabolism, or translation, are enriched in genes expressed at a higher level in groups 2 and 3 samples than in group 1 samples (Fig. 3B and Supplementary Fig. S3A). In contrast, target genes downregulated by HOXA9 and MEIS1, genes downregulated in leukemic stem cells or hematopoietic stem cells, genes related to hematopoiesis, hematopoietic cell lineage, apoptosis or p53 signaling pathway, and genes upregulated in myeloid cell development or in hematopoietic mature cells are enriched in genes expressed at a higher level in group 1 samples than in group 2 and 3 samples (Fig. 3B and Supplementary Fig. S3A).

On the other hand, group 2 and 3 samples also have significantly different enrichments of a series of gene sets. In particular, genes are highly expressed in MLL-rearranged leukemia or AML.

Figure 3. Comparison of gene expression profiles between different groups of leukemia or normal control cells. A, unsupervised hierarchical clustering analysis of the control (n = 5), HOXA9+MEIS1 (n = 3), HOXA9+PBX3 (n = 3), HOXA9 (n = 3), PBX3+MEIS1 (n = 3), and MLL-AF9 (n = 3) groups. The hierarchical clustering tree is shown. B, gene sets that are shared by group 2 (G2; including HOXA9+MEIS1, HOXA9+PBX3, and HOXA9) and group 3 (G3; including PBX3+MEIS1 and MLL-AF9 (M49)) samples, with a significantly different pattern in group 1 (G1; normal control (NC)) samples, as detected by GSEA (32). C, gene sets that are differentially enriched between group 2 and group 3 samples. NSE, normalized enrichment score.
with NPM1 mutations, and target genes upregulated by NUP98-HOXA9 fusion gene, are enriched in genes expressed at a higher level in group 3 samples than in group 2 samples (Fig. 3C and Supplementary Fig. S3B). Indeed, besides MLL-rearranged leukemia, previous studies have reported that the HOXA/MEIS1/PBX3 genes are also highly expressed in AML with NPM1 mutations or NUP98-HOXA9 fusion (40-43). In contrast, genes related to hematopoiesis, p53 pathway, PTEN pathway, FAS signaling pathway, genes highly expressed in hematopoietic late progenitor cells, and genes downregulated in hematopoietic stem cells or in NPM1-mutated AML, are enriched in genes expressed at a higher level in group 2 samples than in group 3 samples (Fig. 3C and Supplementary Fig. S3B). Thus, genes highly expressed in group 2 are more enriched with genes belonging to the pathways related to apoptosis and cell differentiation, while genes highly expressed in group 3 are more enriched with genes sets upregulated in MLL-rearranged. NPM1 mutated, or NUP98-HOXA9 leukemic cells. Most of these gene sets are also significantly (P < 0.05) enriched in the group of PBX3+MEIS1 samples relative to group 2 samples (see Supplementary Fig. S4), further suggesting that the PBX3+MEIS1 samples share the core genes sets with the MLL-AF9 samples.

PBX3/MEIS1 AML recapitulates the core transcriptome of MLL-AF9 AML

We then performed ANOVA analysis and identified 2,562 genes that are significantly differentially expressed [false discovery rate (FDR) < 0.01] between the three groups of samples (Supplementary Fig. S5A). Through significance analysis of microarrays (44), we found that 166 and 211 genes are expressed at a significantly higher and lower level (q < 0.05; FDR < 0.01), respectively, in group 3 compared with both groups 1 and 2 (Fig. 4 and Supplementary Figs. S5B and S6). A total of 279 and 85 genes are expressed at a significantly higher and lower level (q < 0.05; FDR < 0.05), respectively, in group 2 compared with both groups 1 and 3 (Supplementary Figs. S5B, S7, and S8). A total of 1,190 and 1,022 genes are expressed at a significantly higher and lower level (q < 0.05; FDR < 0.05), respectively, in group 1 compared with both groups 2 and 3 (Supplementary Fig. S5B; Supplementary Tables S1 and S2).

Through searching for the DAVID (34, 35), we found that gene sets associated with “homobox transcription factor,” “embryonic development,” “DNA binding” and “transcription/transcription regulator activity” are significantly enriched (FDR < 0.05) in genes highly expressed in group 3 (see Supplementary Fig. S5C). Gene sets associated with “transferase activity,” “G-protein modulator,” “lyosome” and “cell surface” are significantly enriched in genes highly expressed in group 2 (Supplementary Fig. S5C). Gene sets associated with “immune response,” “hematopoiesis,” “leukocyte/lymphocyte/erythrocyte/myeloid cell differentiation” and “regulation of cell death/apoptosis” are significantly enriched in genes highly expressed in group 1 (Supplementary Fig. S5C). Consistent with our GSEA analysis results (Fig. 3B and Supplementary Fig. S3A), genes associated with cell death/apoptosis and hematopoietic cell differentiation are significantly downregulated in both groups 2 and 3 AML samples relative to normal control (group 1) samples (see Supplementary Fig. S9). Such data suggest that the repression of these genes is highly likely critical for the development of leukemia of both groups 2 and 3. In genes that are expressed at a significantly lower level in group 3 than in both groups 1 and 2, gene sets related to “hematopoiesis,” “regulation of cell differentiation,” “stem cell differentiation,” “apoptosis,” “immune system process,” and “positive regulation of cell activation” are significantly enriched (Supplementary Fig. S5C), notably, those genes are expressed at the lowest level in group 3 and at the highest level in group 1, while at the middle level in group 2 samples (see Supplementary Figs. S10).

Notably, 22 (i.e., Ash2l, Bax2h, Chd9, Dcn1d1, Erbb2ip, Eya1, Hoxa2, Hoxa3, Hoxa4, Hoxa5, Hoxa6, Hoxa7, Hoxa9, Hoxa10, Ile2f, Meis1, Pbx3, Rnf220, Runx2, Sgk3, Trp1, and Tsc2242; see Fig. 4) out of the 166 highly expressed genes in group 3 (13.3%) are potential direct targets of MLL-fusion proteins as detected by at least one of the three published genome-wide ChIPseq or ChIP-chip assays of MLL-fusion targets (45-47). Such proportion (13.3%) is significantly greater (P < 0.0001; χ² test) than that (4/279; 1.4%) of the genes highly expressed in group 2 (Supplementary Table S3). In contrast, none of the 211 genes underexpressed in group 3 and none of the 1,190 genes highly expressed in group 1 is potential direct target of MLL fusions (Supplementary Table S3). These data indicate that MLL-fusion proteins often upregulate, rather than downregulate, expression of their target genes, and that the PBX3/MEIS1 combination sufficiently resembles MLL-fusion proteins in promoting expression of a cohort of core target genes of MLL fusions.

Unlike the PBX3+MEIS1 AML cells, the AML cells with HOXA9+PBX3 or HOXA9+MEIS1 exhibited a very low level of endogenous expression of the Hoxa genes (see Fig. 4). To investigate whether ectopic HOXA9 exerted a suppressive effect on the expression of endogenous Hoxa genes, we ectopically expressed HOXA9 in PBX3+MEIS1 AML cells. As expected, forced expression of HOXA9 did not suppress endogenous Hoxa expression (Supplementary Fig. S11). Thus, our data indicate that the incapability of HOXA9+PBX3 or HOXA9+MEIS1 to upregulate endogenous expression of Hoxa genes is not due to a transcriptional suppression mediated by exogenous expression of HOXA9.

Knockdown of PBX3 and/or MEIS1 leads to a significant downregulation of endogenous HOXA expression in MLL-rearranged AML cells

To investigate whether a high level of PBX3 or MEIS1 expression is also required to maintain the high level of endogenous HOXA expression in MLL-rearranged AML cells, we transfected anti-PBX3 and/or anti-MEIS1 siRNA oligos into MonoMac-6 cells. As expected, knockdown of PBX3 and MEIS1 each alone or together resulted in a significant downregulation of expression of HOXA genes (Fig. 5), further demonstrating the importance of PBX3/MEIS1 in regulating expression of the HOXA genes.

The binding between Meis1 and Pbx3 is essential for their synergistic effects on cell transformation and upregulation of endogenous homeobox genes

Previous studies have identified a functional domain in Meis1 protein that is critical for its binding with Pbx proteins (24, 25). To determine whether the binding between PBX3 and MEIS1 is also critical for the biologic effects caused by coexpression of PBX3 and MEIS1, we cloned mouse Pbx3 gene, and also subcloned the wild-type mouse Meis1 gene and two mutants with point mutations or a regional deletion in the Pbx-binding domain (i.e., Meis1-M2ΔRF/ΔLEL and Meis1-Δ64-202) based...
Figure 4. Heatmap of expression profiles of the 116 genes that are expressed at a significantly higher level in group 3 (i.e., PBX3+MEIS1 and MLL-AF9 samples) than in both groups 1 and 2. Of them, 22 genes are potential direct target genes of MLL-fusion proteins. Expression data was mean centered. Red represents a high expression (scale shown in the top middle).
on the constructs reported previously (24, 25). We then conducted colony-forming/replating assays with mouse bone marrow progenitor cells retrovirally transduced with $Pbx3^+Meis1$ (null-type), $Pbx3^+Meis1$-M2DLRF/ΔLEL, $Pbx3^+Meis1$-Δ64-202, along with $PBX3^+MEIS1$, $HOXA9^+MEIS1$, $MLL-AF9$, and control vectors. As shown in Fig. 6A, coexpression of mouse $Pbx3$ and $Meis1$ genes had a similar effect to coexpression of human $PBX3$ and $MEIS1$ genes on cell transformation/immortalization, with more than 200 colonies per dish after series of replating. In contrast, coexpression of $Pbx3$ with mutated $Meis1$ ($Meis1$-M2DLRF/ΔLEL or $Meis1$-Δ64-202) lost the capacity to form a significant number of colonies after series of replating (Fig. 6A), indicating that disruption of the binding between $Meis1$ and $Pbx3$ substantially inhibits their synergistic effect on cell transformation.

Not surprisingly, our further qPCR assays showed that, despite that $Pbx3$ and $Meis1$, wild-type or mutants, show the comparable level, coexpression of $Pbx3$ with $Meis1$ mutants ($Meis1$-M2DLRF/ΔLEL or $Meis1$-Δ64-202) could not upregulate expression of endogenous $Hoxa$ genes to a level as high as that induced by coexpression of $Pbx3$ with wild-type $Meis1$, a phenomenon verified by immunoblotting (Fig. 6B and C). Thus, disruption of the binding between $Meis1$ and $Pbx3$ also substantially abrogates their synergistic effect on upregulation of expression of endogenous homeobox genes.

Discussion

Here we show, for the first time, that forced expression of both $PBX3$ and $MEIS1$ can transform/immortalize normal HSPCs in vitro and induce a rapid AML in vivo. Although the binding ability of $Meis1$ with Pbx proteins has been reported previously to be essential for the synergistic effect between $Meis1$ and $Hoxa9$ and for the function of MLL-fusion proteins (18, 24, 25), no efforts have been exerted to investigate whether forced expression of both $MEIS1$ and $PBX3$ is sufficient to transform cells and induce leukemia, without forced expression of a $HOXA$ gene. Indeed, because neither $Meis1$ nor $Pbx3$ alone can induce cell transformation and leukemogenesis (20, 21, 23, 26), they have been thought to mainly play supportive roles in facilitating $HOXA$ proteins in regulating their downstream targets (18, 24–28). Therefore, our new finding reveals the functional importance of $PBX3$ and $MEIS1$ in cell transformation and leukemogenesis.

More strikingly, we further show that it is the coexpression of $PBX3$ and $MEIS1$, not coexpression of $HOXA9$ and $MEIS1$ (or $HOXA9$ and $PBX3$), that can recapitulate the core transcriptome of MLL-rearranged AML, especially the significant upregulation of a set of homeobox transcriptional factors (in particular, the $Hoxa$ genes, $Meis1$ and $Pbx3$). In fact, a total of more than 160 genes (including the Homeobox genes) are significantly upregulated by both coexpression of $PBX3$ and $MEIS1$ and forced expression of
MLL-AF9. Notably, forced expression of HOXA9 alone or together with MEIS1 or PBX3 cannot upregulate expression of most of those genes at all. Indeed, consistent with our observation, previous studies also showed that forced expression of Hoxa9 and Meis1 each alone or together cannot significantly upregulate expression of endogenous Pbx3 and Hoxa genes (25, 48). In addition, more than 210 genes are significantly repressed by both MLL-fusion proteins and the PBX3/MEIS1 combination; although these genes are also repressed by HOXA9 alone or together with MEIS1 or PBX3, the repression degrees are much more moderate. Therefore, despite the close relationship between HOXA9, MEIS1, and PBX3, only the PBX3/MEIS1 combination, but not the HOXA9/MEIS1 or HOXA9/PBX3 combination (or HOXA9 alone), can resemble MLL-fusion proteins in inducing critical transcriptional programs. Further systematic studies are warranted in the future to decipher the underlying molecular mechanism(s). It is possible that a certain threshold of abundance of both PBX3 and MEIS1 is required for them to initiate their cooperation in inducing expression of endogenous HOXA genes, and the induced HOXA proteins can further cooperate with PBX3 and MEIS1 and enhance their downstream transcriptional programs, which in turn leads to the full establishment of the core transcriptome of MLL-rearranged AML. In contrast, because forced expression of HOXA9 alone or together with MEIS1 or PBX3 cannot achieve sufficiently high abundance of both PBX3 and MEIS1, and thereby cannot induce the core transcriptome of MLL-rearranged AML.

Besides MLL-rearranged AML, AMLs with NPM1 mutations or NUP98-HOXA9 fusion, which together account for more than 30% of total AML cases, are also featured with aberrant
overexpression of a set of homeobox genes, including the HOXA/MEIS1/PBX3 genes (40–43, 49). No surprise, gene sets upregulated in AML with NPM1 mutations or NUP98-HOXA9 fusion are significantly enriched in genes highly expressed in both PBX3/MEIS1 and MLL-AF9 AML cells. Thus, it is highly likely that the cooperation between PBX3 and MEIS1 is critical for the establishment of the core transcriptomes of a wide range of AMLs, not limited to MLL-rearranged AML.

Furthermore, our current study together with previously studies (18, 24, 25) suggest that the binding between MEIS1 and PBX proteins is critical for the biologic functions of the PBX3/MEIS1 combination and MLL-fusion proteins in cell immortalization, leukemogenesis, and regulation of transcriptional programs. Therefore, targeting the binding between MEIS1 and PBX3 may represent a promising therapeutic strategy to cure leukemia with aberrant overexpression of homeobox genes, such as AMLs with MLL-rearrangements, NPM1 mutations, or NUP98-HOXA9 fusion. We propose that small-molecule compounds or small peptides can be developed to specially inhibit the binding between MEIS1 and PBX3 and they can be applied in clinic, alone or together with other therapeutic agents, to treat leukemia.

In summary, we demonstrate that forced expression of PBX3 and MEIS1 is sufficient to induce cell transformation and leukemogenesis, and to resemble MLL-fusion proteins in inducing the core transcriptional programs, especially the upregulation of a set of homeobox genes. The biologic functions of the PBX3/MEIS1 combination are dependent on their binding ability. Thus, our finding is of great significance as it shows that two previously assumed “supporting actors” (i.e., PBX3 and MEIS1) highly likely act as “leading actors” in the establishment of the core transcriptome of AML with MLL rearrangements, and probably also in that of AML with NPM1 mutations or NUP98-HOXA9 fusion. Targeting the binding between PBX3 and MEIS1 represents an attractive therapeutic strategy to treat a wide-range of AML with aberrant overexpression of homeobox genes.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: Z. Li, J. Chen
Development of methodology: Z. Li, P. Chen, Y. Li, S. Li, H. Huang, G. C. Wang
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): Z. Li, P. Chen, Y. Li, A. G. Elkhahloun, S. Arnovitz, H. Weng, H. Huang, X. Jiang, P. P. Liu, J. Chen
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): Z. Li, P. Chen, R. Su, Y. Li, A. G. Elkhahloun, Z. Zuo, S. Gusbusani, S. Li, X. Jiang, P. P. Liu, J. Chen
Writing, review, and/or revision of the manuscript: Z. Li, P. Chen, Z. Zuo, S. Li, M. B. Neilly, G. G. Wang, X. Jiang, J. Chen
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): Z. Li, P. Chen, R. Su, C. Hu, Y. Li, H. Weng, Y. Wang, S. Li, M. B. Neilly, G. G. Wang, X. Jiang, J. Chen
Study supervision: Z. Li, J. Chen
Other (reagents/analytic tools and/or grant support): J. Jin

Acknowledgments

The authors thank Drs. Mark P. Kamps, Scott Armstrong, Gregory Hannon, and Lin He for providing retroviral constructs.

Grant Support

This work was supported in part by the NIH RO1 grants CA178454, CA182528, and CA127277 (J. Chen), Leukemia & Lymphoma Society (ILS) Special Fellowship (Z. Li), ILS Translational Research Grant (J. Chen), American Cancer Society (ACS) Research Scholar grant (J. Chen), ACS-IL Research Scholar grant (Z. Li), Gabrielle’s Angel Foundation for Cancer Research (J. Chen, Z. Li, X. Jiang, and H. Huang), and Intramural Research Program of National Human Genome Research Institute, NIH (A. G. Elkhahloun and P. P. Liu).

Received June 10, 2015; revised October 1, 2015; accepted October 30, 2015; published OnlineFirst January 8, 2016.
The PBX3/MEIS1 Axis in Leukemia

PBX3 and MEIS1 Cooperate in Hematopoietic Cells to Drive Acute Myeloid Leukemias Characterized by a Core Transcriptome of the MLL-Rearranged Disease

Zejuan Li, Ping Chen, Rui Su, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-15-1566

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2016/01/08/0008-5472.CAN-15-1566.DC1

Cited articles
This article cites 49 articles, 29 of which you can access for free at:
http://cancerres.aacrjournals.org/content/76/3/619.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.